Онлайн калькулятор сопротивления резистора параллельно. Последовательное и параллельное соединение резисторов

Параллельное соединение резисторов — одно из двух видов электрических соединений, когда оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов. Зачастую или параллельно для того, чтобы создать более сложные электронные схемы.

Схема параллельного соединения показан на рисунке ниже. При параллельном соединении резисторов, напряжение на всех резисторах будет одинаковым, а протекающий через них ток будет пропорционален их сопротивлению:

Формула параллельного соединения резисторов

Общее сопротивление нескольких резисторов соединенных параллельно определяется по следующей формуле:

Ток, протекающий через отдельно взятый резистор, согласно , можно найти по формуле:

Параллельное соединение резисторов — расчет

Пример №1

При разработке устройства, возникла необходимость установить резистор с сопротивлением 8 Ом. Если мы просмотрим весь номинальный ряд стандартных значений резисторов, то мы увидим, что резистора с сопротивлением в 8 Ом в нем нет.

Выходом из данной ситуации будет использование двух параллельно соединенных резисторов. Эквивалентное значение сопротивления для двух резисторов соединенных параллельно рассчитывается следующим образом:

Данное уравнение показывает, что если R1 равен R2, то сопротивление R составляет половину сопротивления одного из двух резисторов. При R = 8 Ом, R1 и R2 должны, следовательно, иметь значение 2 × 8 = 16 Ом.
Теперь проведем проверку, рассчитав общее сопротивление двух резисторов:

Таким образом, мы получили необходимое сопротивление 8 Ом, соединив параллельно два резистора по 16 Ом.

Пример расчета №2

Найти общее сопротивление R из трех параллельно соединенных резисторов:

Общее сопротивление R рассчитывается по формуле:

Этот метод расчета может быть использованы для расчета любого количества отдельных сопротивлений соединенных параллельно.

Один важный момент, который необходимо запомнить при расчете параллельно соединенных резисторов – это то, что общее сопротивление всегда будет меньше, чем значение наименьшего сопротивления в этой комбинации.

Как рассчитать сложные схемы соединения резисторов

Более сложные соединения резисторов могут быть рассчитаны путем систематической группировки резисторов. На рисунке ниже необходимо посчитать общее сопротивление цепи, состоящей из трех резисторов:


Для простоты расчета, сначала сгруппируем резисторы по параллельному и последовательному типу соединения.
Резисторы R2 и R3 соединены последовательно (группа 2). Они в свою очередь соединены параллельно с резистором R1 (группа 1).

Последовательное соединение резисторов группы 2 вычисляется как сумма сопротивлений R2 и R3:

В результате мы упрощаем схему в виде двух параллельных резисторов. Теперь общее сопротивление всей схемы можно посчитать следующим образом:

Расчет более сложных соединений резисторов можно выполнить используя законы Кирхгофа.

Ток, протекающий в цепи параллельно соединенных резисторах

Общий ток I протекающий в цепи параллельных резисторов равняется сумме отдельных токов, протекающих во всех параллельных ветвях, причем ток в отдельно взятой ветви не обязательно должен быть равен току в соседних ветвях.

Несмотря на параллельное соединение, к каждому резистору приложено одно и то же напряжение. А поскольку величина сопротивлений в параллельной цепи может быть разной, то и величина протекающего тока через каждый резистор тоже будет отличаться (по определению закона Ома).

Рассмотрим это на примере двух параллельно соединенных резисторов. Ток, который течет через каждый из резисторов (I1 и I2) будет отличаться друг от друга поскольку сопротивления резисторов R1 и R2 не равны.
Однако мы знаем, что ток, который поступает в цепь в точке «А» должен выйти из цепи в точке «B» .

Первое правило Кирхгофа гласит: «Общий ток, выходящий из цепи равен току входящий в цепь».

Таким образом, протекающий общий ток в цепи можно определить как:

Затем с помощью закона Ома можно вычислить ток, который протекает через каждый резистор:

Ток, протекающий в R1 = U ÷ R1 = 12 ÷ 22 кОм = 0,545 мА

Ток, протекающий в R 2 = U ÷ R2 = 12 ÷ 47 кОм = 0,255 мА

Таким образом, общий ток будет равен:

I = 0,545 мА + 0,255 мА = 0,8 мА

Это также можно проверить, используя закон Ома:

I = U ÷ R = 12 В ÷ 15 кОм = 0,8 мА (то же самое)

где 15кОм — это общее сопротивление двух параллельно соединенных резисторов (22 кОм и 47 кОм)

И в завершении хочется отметить, что большинство современных резисторов маркируются цветными полосками и назначение ее можно узнать .

Параллельное соединение резисторов — онлайн калькулятор

Чтобы быстро вычислить общее сопротивление двух и более резисторов, соединенных параллельно, вы можете воспользоваться следующим онлайн калькулятором:

Подведем итог

Когда два или более резистора соединены так, что оба вывода одного резистора соединены с соответствующими выводами другого резистора или резисторов, то говорят, что они соединены между собой параллельно. Напряжение на каждом резисторе внутри параллельной комбинации одинаковое, но токи, протекающие через них, могут отличаться друг от друга, в зависимости от величины сопротивлений каждого резистора.

Эквивалентное или полное сопротивление параллельной комбинации всегда будет меньше минимального сопротивления резистора входящего в параллельное соединение.

На практике нередко встречается задача нахождения сопротивления проводников и резисторов при различных способах соединения. В статье рассмотрено, как рассчитывается сопротивление при параллельном соединении проводников и некоторые другие технические вопросы.

Сопротивление проводника

Все проводники имеют свойство препятствовать течению электрического тока, его принято называть электрическим сопротивлением R, оно измеряется в омах. Это основное свойство проводниковых материалов.

Для ведения электротехнических расчётов применяется удельное сопротивление - ρ Ом·м/мм 2 . Все металлы - хорошие проводники, наибольшее применение получили медь и алюминий, гораздо реже применяется железо. Лучший проводник - серебро, оно применяется в электротехнической и электронной промышленности. Широко распространены сплавы с высоким

При расчёте сопротивления используется известная из школьного курса физики формула:

R = ρ · l/S, S - площадь сечения; l - длина.

Если взять два проводника, то их сопротивление при параллельном соединении станет меньше из-за увеличения общего сечения.

и нагрев проводника

Для практических расчётов режимов работы проводников применяется понятие плотности тока - δ А/мм 2 , она вычисляется по формуле:

δ = I/S, I - ток, S - сечение.

Ток, проходя по проводнику, нагревает его. Чем больше δ, тем сильнее нагревается проводник. Для проводов и кабелей разработаны нормы допустимой плотности, которые приводятся в Для проводников нагревательных устройств существуют свои нормы плотности тока.

Если плотность δ выше допустимой, может произойти разрушение проводника, например, при перегреве кабеля у него разрушается изоляция.

Правилами регламентируется производить расчёт проводников на нагрев.

Способы соединения проводников

Любой проводник гораздо удобнее изображать на схемах как электрическое сопротивление R, тогда их легко читать и анализировать. Существует всего три способа соединения сопротивлений. Первый способ самый простой - последовательное соединение.

На фото видно, что полное сопротивление равно: R = R 1 + R 2 + R 3 .

Второй способ более сложный - параллельное соединение. Расчёт сопротивления при параллельном соединении выполняется поэтапно. Рассчитывается полная проводимость G = 1/R, а затем полное сопротивление R = 1/G.

Можно поступить и по-другому, прежде рассчитать общее сопротивление при R1 и R2, после этого повторить операцию и найти R.

Третий способ соединения наиболее сложный - смешанное соединение, то есть присутствуют все рассмотренные варианты. Схема приведена на фото.

Для расчёта этой схемы её следует упростить, для этого заменяют резисторы R2 и R3 одним R2,3. Получается несложная схема.

R2,3,4 = R2,3 · R4/(R2,3 + R4).

Схема становится ещё проще, в ней остаются резисторы, имеющие последовательное соединение. В более сложных ситуациях используется этот же метод преобразования.

Виды проводников

В электронной технике, при производстве проводники представляют собою тонкие полоски медной фольги. Ввиду малой длины сопротивление у них незначительно, им во многих случаях можно пренебречь. Для этих проводников сопротивление при параллельном соединении уменьшается вследствие увеличения сечения.

Большой раздел проводников представляют обмоточные провода. Они выпускаются разных диаметров - от 0,02 до 5,6 миллиметра. Для мощных трансформаторов и электродвигателей выпускаются медные шинки прямоугольного сечения. Иногда при ремонте заменяют провод большого диаметра на несколько параллельно соединённых меньшего размера.

Особый раздел проводников представляют провода и кабели, промышленность предоставляет широчайший выбор марок для самых различных нужд. Нередко приходится заменять один кабель на несколько, меньшего сечения. Причины этого бывают самые различные, например, кабель сечением 240 мм 2 очень трудно прокладывать по трассе с крутыми изгибами. Его заменяют на 2×120 мм 2 , и проблема решена.

Расчёт проводов на нагрев

Проводник нагревается протекающим током, если его температура превысит допустимую, наступает разрушение изоляции. ПУЭ предусматривает расчёт проводников на нагрев, исходными данными для него являются сила тока и условия внешней среды, в которой проложен проводник. По этим данным из таблиц в ПУЭ выбирается рекомендуемое проводника сечение (провода или кабеля).

На практике встречаются ситуации, когда нагрузка на действующий кабель сильно возросла. Существует два выхода ‒ заменить кабель на другой, это бывает дорого, или параллельно ему проложить ещё один, чтобы разгрузить основной кабель. В этом случае сопротивление проводника при параллельном соединении уменьшается, следовательно падает выделение тепла.

Чтобы правильно выбрать сечение второго кабеля, пользуются таблицами ПУЭ, важно при этом не ошибиться с определением его рабочего тока. В этой ситуации охлаждение кабелей будет даже лучше, чем у одного. Рекомендуется рассчитать сопротивление при двух кабелей, чтобы точнее определить их тепловыделение.

Расчёт проводников на потерю напряжения

При расположении потребителя R н на большом расстоянии L от источника энергии U 1 возникает довольно большое падение напряжения на проводах линии. К потребителю R н поступает напряжение U 2 значительно ниже начального U 1 . Практически в качестве нагрузки выступает различное электрооборудование, подключаемое к линии параллельно.

Для решения проблемы производят расчет сопротивления при параллельном соединении всего оборудования, так находится сопротивление нагрузки R н. Далее следует определить сопротивление проводов линии.

R л = ρ · 2L/S,

Здесь S - сечение провода линии, мм 2 .

Параллельные соединения резисторов, формула расчёта которых выводится из закона Ома и правил Кирхгофа, являются наиболее распространённым типом включения элементов в электрическую цепь. При параллельном соединении проводников два или несколько элементов объединяются своими контактами с обеих из сторон соответственно. Подключение их к общей схеме осуществляется именно этими узловыми точками.

Особенности включения

Включённые таким образом проводники нередко входят в состав сложных цепочек, содержащих, помимо этого, последовательное соединение отдельных участков.

Для такого включения типичны следующие особенности:

  • Общее напряжение в каждой из ветвей будет иметь одно и то же значение;
  • Протекающий в любом из сопротивлений электрический ток всегда обратно пропорционален величине их номинала.

В частном случае, когда все включённые в параллель резисторы имеют одинаковые номинальные значения, протекающие по ним «индивидуальные» токи также будут равны между собой.

Расчёт

Сопротивления ряда соединённых в параллель проводящих элементов определяются по общеизвестной форме расчёта, предполагающей сложение их проводимостей (обратных сопротивлению величин).

Протекающий в каждом из отдельных проводников ток в соответствие с законом Ома, может быть найден по формуле:

I= U/R (одного из резисторов).

После ознакомления с общими принципами обсчёта элементов сложных цепочек можно перейти к конкретным примерам решения задач данного класса.

Типичные подключения

Пример №1

Нередко для решения стоящей перед конструктором задачи требуется путём объединения нескольких элементов получить в итоге конкретное сопротивление. При рассмотрении простейшего варианта такого решения допустим, что общее сопротивление цепочки из нескольких элементов должно составлять 8 Ом. Этот пример нуждается в отдельном рассмотрении по той простой причине, что в стандартном ряду сопротивлений номинал в 8 Ом отсутствует (есть только 7,5 и 8,2 Ом).

Решение этой простейшей задачи удаётся получить за счёт соединения двух одинаковых элементов с сопротивлениями по 16 Ом каждое (такие номиналы в резистивном ряду существуют). Согласно приводимой выше формуле общее сопротивление цепочки в этом случае вычисляется очень просто.

Из неё следует:

16х16/32=8 (Ом), то есть как раз столько, сколько требовалось получить.

Таким сравнительно простым способом удаётся решить задачу формирования общего сопротивления, равного 8-ми Омам.

Пример №2

В качестве ещё одного характерного примера образования требуемого сопротивления можно рассмотреть построение схемы, состоящей из 3-х резисторов.

Общее значение R такого включения может быть рассчитано по формуле последовательного и параллельного соединения в проводниках.

В соответствии с указанными на картинке значениями номиналов, общее сопротивление цепочки будет равно:

1/R = 1/200+1/220+1/470 = 0,0117;

R=1/0,0117 = 85,67Ом.

В итоге находим суммарное сопротивление всей цепочки, получаемой при параллельном соединении трёх элементов с номинальными значениями 200, 240 и 470 Ом.

Важно! Указанный метод применим и при расчёте произвольного числа соединенных в параллель проводников или потребителей.

Также необходимо отметить, что при таком способе включения различных по величине элементов общее сопротивление будет меньше, чем у самого малого номинала.

Расчёт комбинированных схем

Рассмотренный метод может применяться и при расчёте сопротивления более сложных или комбинированных схем, состоящих из целого набора компонентов. Их иногда называют смешанными, поскольку при формировании цепочек используются сразу оба способа. Смешанное соединение резисторов представлено на размещенном ниже рисунке.

Для упрощения расчета сначала разбиваем все резисторы по типу включения на две самостоятельные группы. Одна из них представляет собой последовательное соединение, а вторая – имеет вид подключения параллельного типа.

Из приведённой схемы видно, что элементы R2 и R3 соединяются последовательно (они объединены в группу 2), которая, в свою очередь, включена в параллель с резистором R1, принадлежащим группе 1.

Для элементов из группы 2 значение общего сопротивления находится как сумма R2 и R3:

R (2+3) = R2 + R3.

Для получения окончательного результата приводим схему к виду, получаемому при параллельном соединении двух сопротивлений. После этого суммарное значение для всей схемы в целом вычисляется согласно уже рассмотренной ранее формуле.

В заключение отметим, что для проведения расчётных операций, относящихся к категории сложных соединений, можно воспользоваться теми же методиками. В их основу заложены всё те же закон Ома и правила Кирхгофа, известные ещё со школьной скамьи. Главное – это грамотно распорядиться всеми описанными выше формулами.

Видео

Собирая самостоятельные схемы, начинающие радиолюбители сталкиваются с необходимостью установить то или иное сопротивление, величины которого нет в стандартном ряде или на руках. Поэтому нужная величина импеданса подбирается путём параллельного или последовательного соединения элементов. Для правильного вычисления эквивалентного значения проще всего воспользоваться калькулятором для сопротивления, но можно и провести вычисления самостоятельно по несложным формулам.

Назначение и определение импеданса

Практически ни одно электронное устройство не обходится в своей схеме без резисторов. Являясь пассивными элементами, они имеют основное предназначение - ограничивать величину тока в электрической цепи. Кроме токоограничения, они служат делителями напряжения или шунтами в измерительных приборах.

Электрическое сопротивление - это величина, имеющая физическую природу и характеризующая возможность проводника пропускать электрический ток. Принцип работы резистора был описан выдающимся экспериментатором Омом. Позже в его честь и была названа единица измерения электрического сопротивления - Ом. Учёный, проводя ряд экспериментов, установил зависимость между силой тока, напряжением и сопротивлением в проводнике. В результате была выведена простая формула, известная как закон Ома: I = U/R, где:

  • I - проходящая через проводник сила тока, измеряемая в Амперах;
  • U - напряжение, приложенное к проводнику, единица измерения - Вольт;
  • R - сопротивление проводника, измеряется в Омах.

Позже устройства, использующиеся только в качестве элементов сопротивления в электрических цепях, получили название - резисторы. Такие приборы, кроме величины сопротивления, характеризуются мощностью, рассчитывающейся по следующей формуле: P = I2 * R. Полученная величина измеряется в Ваттах.

В схемотехнике используется как параллельное, так и последовательное соединение проводников. В зависимости от этого изменяется и величина импеданса участка цепи. Вид соединения, если он не используется для подбора нужного значения, как раз и характеризует применение резисторов в первом случае как токоограничителей, а во втором - как делителей напряжения.

На схемах резисторы обозначаются в виде прямоугольника и подписываются латинской буквой R. Рядом указывается порядковый номер и значение сопротивления. Например, R23 1k обозначает, что резистор с номером 23 имеет сопротивление, равное одному килоОму. Полоски, изображённые внутри прямоугольника, характеризуют мощность, рассеиваемую на проводнике.

Фундаментальный закон сохранения энергии гласит: энергия никуда не исчезает и из ниоткуда не появляется, а только изменяет форму. Поэтому при ограничении тока часть энергии трансформируется в тепло. Именно эту часть и называют мощностью рассеивания резистора, т. е. такую её величину, которую может выдержать сопротивление без изменения своих параметров.

Сам по себе резистор может иметь различную конструкцию и вид . Например, быть проволочным, керамическим, слюдяным и т. п. Маркируется он тремя способами:

Поэтому видя, какие резисторы установлены в схеме, даже начинающему радиолюбителю не составит труда рассчитать общее сопротивление, особенно используя онлайн-калькулятор параллельного соединения резисторов или последовательного. В случае невозможности различить маркировку на корпусе его сопротивление возможно измерить мультиметром. Но опытные электротехники знают, что для точного измерения понадобится один вывод сопротивления отсоединить от схемы. Связано это как раз с видом подключения проводника.

Параллельное соединение

Из решения видно, что если R1 совпадает по номиналу с R2, то общая величина сопротивления равна половине значения одного из элементов. Поэтому при требуемом номинале, равном 6 Ом, это значение составит: Rx = 2*6 = 12 Ом. Для проверки результата следует подставить полученный ответ в формулу: Rэ = (R1*R2) / (R1+R2) = (12*12) / (12+12) = 6 Ом.

Таким образом, решением поставленной задачи будет параллельное включение двух резисторов с величиной сопротивления, равной 12 Ом.

Задача на нахождение эквивалента

Пусть существует схема с тремя параллельно включёнными резисторами и для её упрощения необходимо заменить их одним элементом. Номиналы проводников составляют: R1 = 320 Ом, R2= 10 Ом, R3 = 1 кОм. Для решения задачи используется уже известная формула:

  • 1/R = (1/R1) + (1/R2) + (1/R3);
  • Rэкв = (R1*R2*R3) / (R1+R2+R3).

Перед тем как подставлять величины в формулу , их все понадобится привести к международной системе единиц (СИ). Так, один килоОм равен 1000 Ом, при подставлении этого значения получается ответ: Rэ = (320*1*1000) / (320+10+1000) = 2406 Ом или 2,4 кОм, что как раз соответствует величине из стандартного ряда. Такая методика расчёта применяется для любого количества параллельно соединённых резисторов.

Последовательное включение

Используя эти правила, которые справедливы для любого числа соединённых проводников в схеме, определяется общее значение импеданса для любого вида подключения. Для того чтобы определить эквивалентное значение сопротивления параллельно-последовательного соединения, участок схемы делится на небольшие группы из параллельно или последовательно включённых резисторов. Затем используется алгоритм, помогающий оптимально посчитать значение эквивалента:

Определяется общее сопротивление всех узлов в схеме с параллельным подключением резисторов:

  1. При нахождении в этих узлах последовательно соединённых проводников первоначально считается их сопротивление.
  2. Как только значения эквивалентных значений вычислены, схема упрощается до последовательной цепочки из эквивалентных резисторов.
  3. Находится окончательное значение общего сопротивления.

Например, существует схема, в которой надо определить полное сопротивление цепи, при этом сопротивление резисторов R1=R3=R5=R6=3 Ом, а R2 =20 Ом и R4=24 Ом. Сопротивления R3, R4, и R5 включены последовательно, поэтому общий импеданс на этом участке цепи равен: Rоб1 = R3+R4+R5 = 30 Ом.

После замены R3, R4, R5 на Rоб1 резистор R3 окажется подключённым параллельно этому сопротивлению. Поэтому импеданс на этом участке будет равен:

Rоб2 = (R2* Rоб1) / (R3+Rоб1) = (20*30) / (20+30) = 12 Ом.

Резисторы R1 и R6 включены с Rоб2 последовательно, а это значит, что эквивалент всей схемы равен: Rэкв = Rоб1+Rоб2+ R6 = 3+12+3 = 18 Ом.

Так шаг за шагом вычисляется эквивалентное значение любой сложности схемы . При множестве проводников, входящих в электрическую цепь, нетрудно ошибиться при расчётах, поэтому все операции выполняются аккуратно или используются онлайн-калькуляторы.

Онлайн-расчёт на калькуляторе

Создано множество интернет-страниц, позволяющих найти сопротивление параллельных резисторов за несколько секунд, используя в своих вычислительных алгоритмах формулы для расчёта параллельного соединения. Такие калькуляторы достаточно полезны радиолюбителям-конструкторам или специалистам РЭА при возникновении затруднения с выбором нужного номинала резистора для замены его в цепи электронного устройства.

Внешний вид онлайн-приложений может отличаться друг от друга, а вот принцип работы одинаков. Немаловажным является в работе программ тот факт, что алгоритмы их вычисления используют разную точность в округлении результата, поэтому ответ в некоторых программах при сравнении может немного отличаться.

Само приложение обычно представляет собой ячейки, в которые вносится величина значений резисторов в международной системе измерений. После того как все поля заполнены, нажимается кнопка «Рассчитать» и получается ответ в ячейке напротив. Ответ рассчитывается в Омах. В некоторых приложениях функциональность может быть расширена, это такие возможности, как автоматический перевод значений резисторов в систему СИ, отображение наиближайшего стандартного значения сопротивления из номинального ряда, близкого к полученному ответу.

Полезной функцией может быть и обратный переход, когда вводится эквивалентное сопротивление, а в ответе выдаётся комбинация номиналов проводника для параллельного включения.

Таким образом, расчёт с использованием онлайн-калькуляторов помогает решить задачу не только быстро, но и безошибочно, чем часто пользуются не только радиолюбители, но и профессионалы.

Параллельное соединение резисторов, наряду с последовательным, является основным способом соединения элементов в электрической цепи. Во втором варианте все элементы установлены последовательно: конец одного элемента соединен с началом следующего. В такой схеме сила тока на всех элементах одинаковая, а падение напряжений зависит от сопротивления каждого элемента. В последовательном соединении есть два узла. К одному подсоединены начала всех элементов, а ко второму их концы. Условно для постоянного тока можно обозначить их как плюс и минус, а для переменного как фазу и ноль. Благодаря своим особенностям находит широкое применение в электрических схемах, в том числе и со смешанным соединением. Свойства одинаковы для постоянного и переменного тока.

Расчет общего сопротивления при параллельном соединении резисторов

В отличие от последовательного соединения, где для нахождения общего сопротивления достаточно сложить значение каждого элемента, для параллельного то же самое будет справедливо для проводимости. А так как она обратно пропорциональна сопротивлению, получим формулу, представленную вместе со схемой на следующем рисунке:

Необходимо отметить одну важную особенность расчета параллельного соединения резисторов: общее значение будет всегда меньше, чем самое маленькое из них. Для резисторов справедливо как для постоянного, так и для переменного тока. Катушки и конденсаторы имеют свои особенности.

Сила тока и напряжение

При расчете параллельного сопротивления резисторов необходимо знать, как рассчитать напряжение и силу тока. В этом случае нам поможет закон Ома, определяющий связь между сопротивлением, силой тока и напряжением.

Исходя из первой формулировки закона Кирхгофа, получим, что сумма сходящихся в одном узле токов равна нулю. Направление выбираем по направлению протекания тока. Таким образом, положительным направлением для первого узла можно считать входящий ток от источника питания. А отрицательными будут отходящие из каждого резистора. Для второго узла картина противоположна. Исходя из формулировки закона, получим, что суммарный ток равен сумме токов, проходящих через каждый параллельно соединенный резистор.

Итоговое напряжение же определяется по второму закону Кирхгофа. Оно одинаково для каждого резистора и равно общему. Эта особенность используется для подключения розеток и освещения в квартирах.

Пример расчета

В качестве первого примера приведем расчет сопротивления при параллельном соединении одинаковых резисторов. Сила тока, протекающая через них, будет одинаковой. Пример расчета сопротивления выглядит так:

По этому примеру прекрасно видно, что общее сопротивление ниже в два раза, чем каждое из них. Это соответствует тому, что суммарная сила тока в два раза выше, чем у одного. А также прекрасно соотносится с увеличением проводимости в два раза.

Второй пример

Рассмотрим пример параллельного соединения трех резисторов. Для расчета используем стандартную формулу:

Похожим образом рассчитываются схемы с большим количеством параллельно соединенных резисторов.

Пример смешанного соединения

Для смешанного соединения, например, представленного ниже, расчет будет производиться в несколько этапов.

Для начала последовательные элементы можно условно заменить одним резистором, обладающим сопротивлением, равным сумме двух заменяемых. Далее общее сопротивление считаем тем же способом, что и для предыдущего примера. Данный метод подойдет и для других более сложных схем. Последовательно упрощая схему, можно получить необходимое значение.

Например, если вместо резистора R3 будут подключены два параллельных, потребуется сначала рассчитать их сопротивление, заменив их эквивалентным. А далее то же самое, что и в примере выше.

Применение параллельной схемы

Параллельное соединение резисторов находит свое применение во многих случаях. Последовательное подключение увеличивает сопротивление, а для нашего случая оно уменьшится. Например, для электрической цепи требуется сопротивление в 5 Ом, но есть только резисторы на 10 Ом и выше. Из первого примера мы знаем, что можно получить в два раза меньшее значение сопротивления, если установить два одинаковых резистора параллельно друг другу.

Уменьшить сопротивление можно еще больше, например, если две пары параллельно соединенных резисторов соединить параллельно относительно друг друга. Можно уменьшить сопротивление еще в два раза, если резисторы имеют одинаковое сопротивление. Комбинируя с последовательным соединением, можно получить любое значение.

Второй пример - это использование параллельного подключения для освещения и розеток в квартирах. Благодаря такому подключению напряжение на каждом элементе не будет зависеть от их количества и будет одинаковым.

Еще один пример использования параллельного подключения - это защитное заземление электрооборудования. Например, если человек касается металлического корпуса прибора, на который произойдет пробой, получится параллельное соединения его и защитного проводника. Первым узлом будет место прикосновения, а вторым нулевая точка трансформатора. По проводнику и человеку будет течь разный ток. Величину сопротивления последнего принимают за 1000 Ом, хотя реальное значение зачастую гораздо больше. Если бы не было заземления, весь ток, протекающий в схеме, пошел бы через человека, так как он был бы единственным проводником.

Параллельное соединение может использоваться и для батарей. Напряжение при этом остается прежним, однако в два раза возрастает их емкость.

Итог

При подключении резисторов параллельно, напряжение на них будет одинаковым, а ток равен сумме протекающих через каждый резистор. Проводимость будет ровняться сумме каждого. От этого и получается необычная формула суммарного сопротивления резисторов.

Необходимо учитывать при расчете параллельного соединения резисторов то, что итоговое сопротивление будет всегда меньше самого маленького. Это также можно объяснить суммированием проводимости резисторов. Последняя будет возрастать при добавлении новых элементов, соответственно и проводимость будет уменьшаться.