Каркас унифицированный безригельный. Технология Опалубочный элемент сборно-монолитного перекрытия с безригельным каркасом

Выбор той или иной конструктивной схемы здания зависит от его этажности, объемно-планировочной структуры, наличия стройматериалов и базы стройндустрии.

Конструктивная схема представляет собой вариант конструктивной системы по признакам состава и размещения в пространстве основных несущих конструкций – продольному, поперечному или др.

В каркасных зданиях применяют три конструктивные схемы (рис.3.4):

С продольным расположением ригелей;

С поперечным расположением ригелей;

Безригельная.

Каркас с продольным расположением ригеля применяют в жилых домах квартирного типа и массовых общественных зданиях сложной планировочной структуры, например, в зданиях школ.

Каркас с поперечным расположением ригеля применяют в многоэтажных зданиях с регулярной планировочной структурой

Рис. 3.4. Конструктивные схемы каркасных зданий:

а – с продольным расположением ригеля; б – с поперечным; в –

безригельная.

(общежития, гостиницы), совмещая шаг поперечных перегородок с шагом несущих конструкций.

Безригельный (безбалочный) каркас, в основном используют в многоэтажных промышленных зданиях, реже в общественных и жилых, в связи с отсутствием соответствующей производственной базы в сборном жилищном строительстве и относительно малой экономичностью такой схемы.

Преимущество безригельного каркаса используется в жилых и общественных зданиях при их возведении в сборно-монолитных конструкциях методом подъема перекрытий или этажей. При этом имеется возможность произвольной установки колонн в плане здания: их размещение определяется только статическими и архитектурными требованиями и может не подчиняться закономерностям модульной координации шагов и пролетов.

Варианты каркасной конструктивной схемы представлены на рис.3.5.

Рис.3.5.Варианты каркасной конструктивной схемы:

А – с полным; Б – с неполным; В – с безригельным каркасом; 1 – полный каркас с продольным расположением ригелей; 2 – то же, с поперечным; 3 – полный каркас с продольным расположением ригелей колонн (только у наружных стен) и большепролетными перекрытиями; 4 – неполный продольный каркас; 5 – то же, поперечный; 6 – безригельный каркас; К – колонна; Р – ригель; Дж – вертикальная диафрагма жесткости; НП – настил перекрытия, НР – настил-распорка; I – несущие стены; II – ненесущие стены.

При проектировании зданий наиболее распространенной бескаркасной системы используют следующие пять конструктивных схем (рис.3.6):

схема I – с перекрестным расположением внутренних несущих стен при малом шаге поперечных стен (3; 3,6 и 4,2 м). Применяют в проектировании многоэтажных зданий, в зданиях, строящихся в сложных грунтовых и в сейсмических условиях. Конструкции сборных перекрытий, применяемые в массовом строительстве, в зависимости от величины перекрываемого пролета условно делят на перекрытия малого (2,4-4,5 м) и большого (6-7,2 м). ;

Рис.3.6. Конструктивные схемы бескаркасных зданий:

I – перекрестно-стеновая; II и III – поперечно-стеновые; IV и V – продольно-стеновые; А – варианты с ненесущими или самонесущими продольными наружными стенами; Б – то же, с несущими; а – план стен; б – план перекрытий.

схема II – с чередующимися размерами (большим и малым) шага поперечных несущих стен и отдельными продольными стенами жесткости (схема со смешанным шагом стен). Схемы I-II позволяют более разнообразно решать планировку жилых зданий, размещать встроенные нежилые помещения в первых этажах, обеспечивают удовлетворительные планировочные решения детских учреждений и школ;

схема III – с редко расположенными поперечными несущими стенами и отдельными продольными стенами жесткости (с большим шагом стен). Имеет преимущества при применении полносборных конструкций;

схема IV – с продольными наружными и внутренними несущими стенами и редко расположенными поперечными стенами – диафрагмами жесткости (через 25-40). Применяют при проектировании жилых и общественных зданий малой, средней и повышенной этажности с каменными и крупноблочными конструкциями. В панельном строительстве применяют редко;

схема V - с продольными наружными несущими стенами и редко расположенными поперечными диафрагмами жесткости. Применяют в экспериментальном проектировании и строительстве жилых домов высотой 9-10 этажей. Обеспечивает свободу планировки квартир.


Владельцы патента RU 2588229:

Изобретение относится к области строительства, а именно к железобетонным безригельным многоэтажным каркасам для строительства жилых, промышленных и гражданских зданий, как для обычных условий строительства, так и для строительства в сейсмических районах.

Из достигнутого уровня техники известен контактный стык сборных железобетонных колонн с обрывом стержней продольной рабочей арматуры в стыке, с опиранием торцов колонн по слою высокопрочного раствора, при этом по опорным торцам колонн установлены стальные пластины, предусмотрена установка сквозь стык арматурных стержней-коротышей в каналах заполненных высокопрочным раствором, предусмотрено окаймление торца в виде стального выступа, а также установка стальных вкладышей в центре и по контуру стыка в зазоре между стальными торцевыми пластинами равных величине зазора. (1) (см. патент РФ N 2233368, МКП E04B 1/38, 2004 г.).

Недостатком данного технического решения является высокая трудоемкость выполнения данного стыка, кроме этого применение в зоне контакта колонн разно деформируемых материалов приведет к концентрации напряжений в зонах менее деформируемых материалов и как результат - местному (локальному) трещинообразованию, а также сквозной пропуск стержней-коротышей в дополнительных каналах нарушает целостность железобетонного сечения колонн и как результат - снижение несущей способности стыкового соединения.

Известно также техническое решение по устройству контактных стыков сборных железобетонных колонн с обрывом рабочей арматуры, с опиранием торцов колонн на тонкий слой раствора без соединения арматуры (2) (см. А.П. Васильев, Н.Г. Матков, М.Ф. Жансеитов., Контактные стыки колонн с обрывом продольной арматуры., Бетон и железобетон N 8, 1982 г.)

Данное известное техническое решение и его экспериментальное исследование позволяет сделать вывод о целесообразности его применения для многоэтажных каркасов зданий. Недостатком данного стыкового соединения является то что оно непригодно для растягивающих усилий.

Известно устройство стыков железобетонных колонн с усилением металлическими элементами концевых стыкуемых участков железобетонных колонн. (3) (В.С. Плевков, М.Е. Гончаров, Исследование работы стыков железобетонных колонн усиленных металлическими элементами при статическом и кратковременном динамическом нагружениях, Вестник ТГСУ N 2, 2013 г.)

Данное исследование зоны стыков железобетонных колонн показывает, что несущая способность стыка с использованием металлических обойм в зоне стыкуемых колонн увеличивается на 30-40%.

Известно техническое решение узла соединения сборной железобетонной колонны и сборной надколонной плиты перекрытия безригельного безкапительного каркаса здания, в котором соединение осуществляется при помощи трапециевидных соединительных пластин, приваренных с одной стороны к обнаженной в зоне перекрытия силовой арматуре колонн, с другой стороны к замоноличенной в надколонной плите перекрытия стальной обечайке. (4) (см. патент РФ N 2203369, МКП E04B 1/38, 2003 г.)

Недостатком такого технического решения является трудоемкость и материалоемкость по устройству обечайки в надколонной плите перекрытия, кроме того у данного соединения до момента замоноличивания стыка недостаточная жесткость из-за высокой гибкости обнаженной силовой арматуры колонн. Следует отнести к недостаткам данного технического решения то обстоятельство, что к обнаженной силовой арматуре колонн выполняется сварное соединение трапециевидных соединительных элементов для крепления надколонных плит и в этом же уровне осуществляется сварочное соединение соединительных элементов продольной силовой арматуры колонн. Данное обстоятельство приводит к снижению качества сварных соединений. К отрицательным качествам данного технического решения относится также поэтажная корректировка положения выпусков силовой арматуры колонн при изменении ее поэтажного диаметра.

Известно соединение плиты безбалочного сборно-монолитного перекрытия со сборной колонной где колонна в зоне опирания плиты имеет углубление по периметру колонны (5) (патент СССР N 872674, МКИ E04B 1/20, 1981 г.)

Недостатком данного технического решения является недостаточная несущая способность данного стыка на продавливание при плоском перекрытии.

Известно техническое решение стыкового соединения монолитного безбалочного железобетонного перекрытия с монолитной колонной в котором на вертикальных арматурных каркасах перекрытия жестко закреплены стальные пластины в зоне стыка, пластины выполнены длиной не менее 2h+2a, где h - толщина плиты, a - толщина защитного слоя бетона. (6) (см. патент РФ N 2194825, МКП Е04 В 5/43,2002 г.).

Данное техническое решение повышает несущую способность стыкового соединения на перерезывающую силу.

Наиболее близким техническим решением, принятое за прототип, является конструкция безригельного бескапительного железобетонного каркаса, который включает одно и более этажные бесконсольные сборные колонны с обнаженной силовой арматурой в местах пересечения с перекрытием, сборные надколонные плиты перекрытия со сквозными отверстиями обрамленные стальной обечайкой для пропуска многоэтажных колонн и стыкового соединения с ними, сборные пролетные плиты, монолитные участки объединенные между собой в единый диск перекрытия, при этом монтаж пролетных плит перекрытия осуществляется выступающими консолями на ответно соответствующие опорные столики, надколонные и пролетные плиты имеют на торцевых ребрах петлевые выпуски сквозь перехлест которых пропускают арматурные стержни с последующим обетонированием полости стыков. (7) (см. патент РФ N 2247812, МКП E04B 5/43, 2005 г.)

Техническое решение межплитных швов в данной конструкции безригельного каркаса является шарнирным, что ограничивает величину пролета сборно-монолитного перекрытия. Кроме того данная конструкция сборно-монолитного перекрытия является жесткой для вариантов решения объемно-планировочных задач, а также для данного технического решения справедливы недостатки изложенные к аналогу (4).

Задачей изобретения сборно-монолитного безригельного каркаса является увеличение диапазона решения объемно-планировочных задач, повышение несущей способности конструкций каркаса и его узловых соединений, повышение технологичности работ по возведению конструкций каркаса.

Данное изобретение сборно-монолитного железобетоного безригельного каркаса представляет собой ряд технических решений с вариантами исполнения сборных элементов каркаса и их возможной компоновки в сочетании с монолитными участками в зависимости от от факторов планировочного, технологического характера, а также индустриальной базы производства сборных железобетонных изделий.

Представлены варианты технических решений сборно-монолитного железобетоного безригельного каркаса с шарнирными монолитными межплитными швами, с жесткими (неразрезными) монолитными межплитными швами, а также варианты свободного сочетания сборных-железобетонных элементов с пролетными монолитными участками перекрытия, объединенными между собой в неразрезной диск перекрытия.

На чертежах изображено:

на фиг. 1 - схематичный фрагмент плана сборно-монолитного безригельного каркаса с вариантами конфигурации сборных элементов каркаса и их возможной компоновки в сочетании с монолитными участками;

на фиг. 2 - укрупненный фрагмент I плана перекрытия железобетонного безригельного каркаса с шарнирными монолитными межплитными швами между сборными надколонными и пролетными плитами перекрытия;

на фиг. 3 - укрупненный фрагмент II плана перекрытия железобетонного безригельного каркаса с жесткими (неразрезными) монолитными межплитными швами между сборными плитами перекрытия;

на фиг. 4 - укрупненный фрагмент III плана перекрытия железобетонного безригельного каркаса с жесткими (неразрезными) монолитными межплитными швами между сборными плитами перекрытия и жестким (неразрезным) соединением сборных плит с монолитными пролетными участками перекрытия;

на фиг. 5 - поперечный разрез I-I (с раскосными связями);

на фиг. 6 - поперечный разрез I-I (с монолитными диафрагмами);

на фиг. 7 - Узел 1 (сечение A1-A1) - узел стыкового соединения многоэтажной неразрезной сборной бесконсольной колонны со сборной надколонной плитой перекрытия;

на фиг. 8 - вид B1-B1 узла 1 - стыкового соединения многоэтажной неразрезной сборной бесконсольной колонны со сборной надколонной плитой перекрытия;

на фиг. 9 - Узел 2 (сечение A2-A2) - узел стыкового соединения сборных бесконсольных колонн между собой и стыкового соединения колонн с надколонной плитой перекрытия;

на фиг. 10 - вид B2-B2 узла 2 - стыкового соединения сборных бесконсольных колонн между собой и стыкового соединения колонн с надколонной плитой перекрытия;

на фиг. 11 - сечение A4-A4 - сечение по стыковому соединению сборных бесконсольных колонн между собой и с монолитным участком перекрытия;

на фиг 12 - вид B3-B3-по стыковому соединению сборных бесконсольных колонн между собой и с монолитным участком перекрытия;

на фиг. 13 - Узел 2 (сечение A3-A3) - узла стыкового соединения сборных бесконсольных колонн между собой и стыкового соединения колонн с надколонной плитой перекрытия;

на фиг. 14 - сечение A5-A5 - сечение по стыковому соединению сборных бесконсольных колонн между собой и с монолитным участком перекрытия;

на фиг. 15 - сечение A6-A6 по стыку монтажного опорного выступа и монтажной опорной площадки для монтажа надколонных и пролетных плит перекрытия для перекрытия с шарнирными межплитными швами;

на фиг. 16 - сечение A7-A7 по устройству монолитного межплитного шва для перекрытия с шарнирными межплитными швами;

на фиг. 17 - сечение A8-A8 по узлу монтажной фиксации сборных плит перекрытия между собой для перекрытия с жесткими (неразрезными) межплитными швами;

на фиг. 18 - сечение A9-A9 по устройству монолитного межплитного шва с жестким (неразрезным) соединением сборных плит перекрытия;

на фиг. 19 - сечение A10-A10 по жесткому (неразрезному) узлу соединения сборных плит перекрытия с монолитным пролетным участком перекрытия для бессварочного соединения при помощи п-образных анкеров и п-образных анкерных выпусков;

на фиг. 20 - сечение A11-A11 по жесткому (неразрезному) узлу соединения сборных плит перекрытия с монолитным пролетным участком перекрытия путем приваривания п-образных анкеров к закладным деталям сборных плит перекрытия;

на фиг. 21 - сечение A12-A12 по жесткому (неразрезному) узлу соединения сборных плит перекрытия с монолитным пролетным участком перекрытия путем приваривания п-образных анкеров усиленных жесткими вставками к закладным деталям сборных плит перекрытия;

на фиг. 22 - укрупненный фрагмент IV детализация фрагмента перекрытия с балконным участком плиты, а также устройством навесной наружной стены с облицовочным слоем из кирпича;

на фиг. 23 - вид B4-B4 - деталь крепления контурного опорного уголка для опирания облицовочного слоя наружной стены из кирпича;

на фиг. 24 - сечение А13-А13 по армированию ребра между отверстиями для размещения пакетов утеплителя на балконных участках сборных плит перекрытия;

на фиг. 25 - сечение А14-А14 по размещению пакетов утеплителя на балконных участках в теле сборных плит перекрытия;

на фиг. 26 - Узел 5 (сечение А15-А15) узел по устройству поэтажной навесной наружной стены с облицовочным слоем из кирпича;

на фиг. 27 - сечение А16-А16 - по устройству поэтажной навесной наружной стены из сборных трехслойных стеновых панелей;

на фиг. 28 - Узел 6 (сечение А17-А17) узел по устройству наружного ограждения с навесным вентилируемым фасадом;

на фиг. 29 - Узел 3 - узел крепления раскосных связей в верхнем уровне между собой и со связевой плитой перекрытия;

на фиг. 30 - вид В5-В5 узла 3 - крепления раскосных связей со связевой плитой перекрытия;

на фиг. 31 - сечение А18-А18 по узлу 4 - крепления раскосных связей в верхнем уровне между собой;

на фиг. 32 - Узел 4 - узел крепления раскосных связей к колонне в нижнем уровне;

на фиг. 33-сечение А19-А19 по узлу крепления раскосных связей к колонне в нижнем уровне;

на фиг. 34 - Узел 7 - узел соединения монолитной диафрагмы с колонной;

на фиг. 35 - сечение А20-А20 по узлу соединения монолитной диафрагм с колонной;

на фиг. 36 - сечение А21-А21 по междуэтажному соединению монолитных диафрагм.

Железобетонный сборно-монолитный безригельный каркас с шарнирными монолитными межплитными швами включает железобетонные одно и более этажные бесконсольные колонны 1, сборные надколонные плиты перекрытия 2 с отверстиями 3 для пропуска колонн 1 и стыкового соединения с ними, сборные пролетные плиты 4, монолитные участки в виде шарнирных межплитных швов объединенные в единый диск перекрытия, при этом сборные надколонные плиты перекрытия 2 и пролетные плиты 4, для монтажной сборки, снабжены монтажными опорными выступами 5 и опорными площадками 6, причем по опорным поверхностям опорных выступов 5 и опорных площадок 6 установлены закладные детали, например из стальных уголков 7, к которым приварены - образные ребра жесткости 8 из вертикальных стальных пластин, замоноличенных в тело сборных плит 2 и 4 и соединенных на сварке с продольными верхними и нижними стержнями анкерующих каркасов 9. В шарнирных монолитных межплитных швах между сборными плитами 2, 4 на участках между монтажными опорами 5, 6, вдоль межплитных швов, предусмотрена установка верхнего и нижнего горизонтальных стержней 10 по внутренним углам перехлеста п-образных петлевых анкерных выпусков 11, установленных по торцам сборных плит 2, 4 с последующим обетонированием монолитным бетоном 12.

Железобетонный сборно-монолитный безригельный каркас с жесткими монолитными межплитными швами включает сборные железобетонные одно и более этажные бесконсольные колонны 1, сборные надколонные плиты перекрытия 13 с отверстиями 3 для пропуска колонн 1 и стыкового соединения с ними, сборные пролетные плиты перекрытия 14, уширенные монолитные межплитные швы, либо монолитные пролетные участки 15 объединенные в единый неразрезный диск перекрытия, при этом монтажная фиксация сборных плит перекрытия 13, 14 осуществляется при помощи стальных пластин 16 привариваемых к закладным деталям из швеллерных профилей 17 и к вертикальным петлевым анкерным выпускам трапециевидной формы 18 располагаемых на смежных торцевых поверхностях стыкуемых плит, при этом соединение сборных плит 13 и 14, на участках между участками монтажной фиксации, выполняется по уширенным монолитным межплитным швам путем установки, вдоль контура стыка, верхних и нижних горизонтальных арматурных стержней 10, располагаемых по внутренним углам перехлеста п-образных петлевых анкерных выпусков 19 из торцевых граней смежных сборных плит перекрытия 13 и 14, при этом длина перехлеста п-образных петлевых анкерных выпусков 19 из торцевых граней смежных плит перекрытия 13, и 14 должна быть не менее 15d, где d - диаметр анкерных выпусков.

Для варианта исполнения сборно-монолитного железобетонного безригельного каркаса с заменой одной либо нескольких пролетных плит 14 монолитным пролетным участком 15, соединение сборных плит 13 и 14 с монолитным пролетным участком 15 осуществляется путем установки вдоль контура стыка горизонтальных верхних и нижних арматурных стержней 10 по внутренним углам перехлеста п-образных вертикальных петлевых анкерных выпусков 19 из торцевых поверхностей сборных плит перекрытия 13 и 14 и вертикальных п-образных петлевых анкеров 20, устанавливаемых по контуру примыкания монолитных пролетных участков 15 со сборными плитами перекрытия 13, 14, при этом длина перехлеста вертикальных п-образных петлевых анкерных выпусков 19 из торцевых граней смежных плит перекрытия 13, и 14 и вертикальных п-образных петлевых анкеров 20 должна быть не менее 15d, где d - максимальный диаметр анкерных выпусков 19 либо анкеров 20.

Соединение сборных плит перекрытия 13 и 14 с монолитным пролетным участком 15 возможно также выполнять при помощи вертикальных п-образных петлевых анкеров 20 либо 21 привариваемых к вертикальным закладным деталям из швеллерных профилей 17, располагаемых на торцевых поверхностях сборных плит перекрытия 13, 14, при этом п-образные петлевые анкера 21, на концевых участках имеют ребра жесткости 22 из стальных пластин приваренных по вертикальной оси, между верхним и нижним стержнями п-образных петлевых анкеров 21.

Устройство балконных участков перекрытия предлагается выполнять в двух вариантах:

либо балконная часть перекрытия опирается на колонны 1 вынесенные за наружное ограждение здания с наружными надколонными балконными плитами 23 и пролетными балконными плитами 24, либо балконная часть перекрытия выполняется заодно (неразрезно) с надколонными 2, 13 и пролетными 4, 14 плитами перекрытия, при этом в плитах 2, 4, 13, 14 предусмотрены отверстия 25, в плоскости наружного ограждения, для размещения пакетов утеплителя, при этом армирование ребер между отверстиями 25 осуществляется вертикальными арматурными каркасами 26, которые имеют ребра жесткости 27 из стальных пластин приваренных в верхнему и нижнему стержням арматурных каркасов 26.

Для сборно-монолитного железобетонного безригельного каркаса с монолитными шарнирными либо жесткими монолитными межплитными швами, продольные межплитные швы выполнены вразбежку со смещением в каждом поперечном ряду стыкуемых сборных плит перекрытия 2, 4, 13, 14 на величину не менее длины анкеровки максимального диаметра рабочей арматуры плит 2, 4, 13, 14.

Устройство опорного соединения надколонных плит 2, 13 со сборными безконсольными колоннами 1 осуществляется следующим образом: колонны 1 выполнены с вертикальными закладными деталями 28, 29, 30 установленными в углублении 31 от наружных граней колонны 1 по ее периметру в пределах и не менее толщины перекрытия, надколонные плиты 2, 13 выполнены с вертикально расположенными трапециевидными выпусками 32 из стальных пластин жестко связанными с верхними и нижними стержнями анкерных арматурных каркасов 33, установленных по периметру сквозных отверстий 3.

Соединение сборных колонн 1 и надколонных плит 2, 13 выполняется при помощи стальных соединительных элементов 34, например из неравнобоких уголков привариваемых к вертикальным закладным деталям 28, 29 колонн 1 и к вертикальным трапециевидным выпускам 32 из надколонных плит перекрытия 2, 13 с последующим обетонированием полости стыка между углубленной частью 31 колонны 1 и торцевыми поверхностями 35 сквозных отверстий 3 надколонных плит перекрытия 2, 13, при этом торцевые поверхности 35 надколонных плит 2, 13 наклонены от вертикали образуя клинообразную полость омоноличенного стыка.

При осуществлении соединения железобетонных бесконсольных колонн 1 с монолитным пролетным участком перекрытия 15 выполняется установка вертикальных п-образных петлевых анкеров 21 привариваемых к вертикальным закладным деталям 28, 29 колонн 1, установленных в углублении 31 от наружных граней, по контуру колонны 1, при этом п-образные петлевые анкера 21 на концевых участках имеют ребра жесткости 22 из стальных пластин приваренных, по вертикальной оси, между верхним и нижним стержнями петлевых анкеров 21 с последующим обетонированием монолитным участком перекрытия 15.

Стыковое соединения бесконсольных железобетонных колонн 1 каркаса осуществляется путем опирания друг на друга плоскими торцами через растворный шов 36 в пределах толщины междуэтажного перекрытия, при этом торцы стыкуемых колонн 1 выполнены с косвенным армированием арматурными сетками 37 и внутренними арматурными обоймами 38, кроме этого по периметру торцов стыкуемых колонн 1 предусмотрены вертикальные закладные детали 29, 30 в углублении 31 от наружных граней колонны 1.

Соединение стыкуемых колонн 1 выполняется посредством сварки V-образных арматурных соединительных элементов 39 по плоскостям вертикальных закладных деталей 29, 30 с последующим обетонированием монолитным бетоном перекрытия.

Кроме технических решений, имеющих существенные отличия от технических решений аналогов и прототипа, в иллюстрационном примере сборно-монолитного железобетонного безригельного каркаса применены также технические решения которые не являются предметом данного изобретения, но их применение в данном примере сборно-монолитного железобетонного безригельного каркаса является целесообразным.

В примере исполнения представлено устройство раскосных связей 40, которые рекомендуется устраивать при строительстве сборно-монолитного безригельного каркаса в обычных условиях строительства, также при сейсмичности не более 7 баллов.

Соединение раскосных связей 40 осуществляется в нижнем уровне при помощи соединительных пластин 41, приваренных к закладным деталям колонн 1 и раскосных связей 40, в верхнем уровне посредством сварки промежуточного элемента 42 коробчатого сечения к закладным деталям раскосов 40 и к анкерным выпускам 18 трапециевидной формы из торцевых граней отверстия связевой плиты перекрытия 43 при помощи стальных пластин 44, при этом концевые участки анкерных выпусков 18 снабжены жесткими вставками 22 из стальных пластин между верхним и нижним стержнями анкерного выпуска 18. Полость стыкового соединения раскосных связей 40 со связевой плитой перекрытия 43 обетонируется бетоном 12.

Для условий строительства с сейсмичностью 8 и более баллов рекомендуется в сборно-монолитном безригельном каркасе выполнять монолитные диафрагмы жесткости 45.

Монолитные диафрагмы жесткости содержат, кроме двухстороннего армирования по полю монолитной диафрагмы, вертикальную арматуру 46 и элементы соединения с фундаментом, колоннами, плитами перекрытия из жестких вставок 46 и арматурных анкерных каркасов 48.

Устройство поэтажного навесного наружного ограждения выполняется с применением, например, кирпичного облицовочного слоя 49, который укладывается по контурному уголку 50 приваренному к закладным деталям швеллерного сечения 51 располагаемых по наружному торцу междуэтажного перекрытия, причем контурный уголок имеет вертикальные прорези 52 для выполнения вертикального сварочного флангового шва в месте стыковки с закладными деталями 51, кроме того по опорной поверхности контурного уголка 50, вдоль наружного края приварен горизонтальный упорный стержень 53, для предотвращения соскальзывания облицовочной кирпичной кладки 51 с опорной поверхности контурного опорного уголка 50. Под контурным опорным уголком 50 поэтажно укладывается герметизирующая упругая прокладка 54. С наружной стороны кирпичной кладки 49 поэтажный горизонтальный шов опирания и герметизации кирпичной облицовочной кладки закрывают декоративным нащельником 55.

Вариантом поэтажного навесного наружного ограждения служат, например, сборные наружные стеновые панели 56 опертые поэтажно по слою цементно-песчаного раствора на междуэтажные перекрытия. Для фиксации наружных стеновых панелей 56 в плоскости фасада здания 57, на стыкуемых торцах наружных стеновых панелей 56 предусмотрены уступ 58 и выступ 59, которые при стыковке «насухо» обеспечивают совпадение фасадных поверхностей стыкуемых наружных стеновых панелей 56 с плоскостью фасада здания 57. Нижние и верхние торцевые поверхности стыкуемых наружных стеновых панелей 56 разделены герметизирующими упругими прокладками 54. С наружной стороны швы между наружными стеновыми панелями 56 закрываются декоративным нащельником 60.

Для наружного ограждения с применением вентилируемого фасада 61, поэтажно, по контуру плит перекрытия выполняют ограждающую конструкцию из кирпичной кладки 62, либо из сборных железобетонных перегородок, к которым крепится система конструкций вентилируемого фасада 61. Наружное ограждения подвальной части здания выполнено с применением сборных вертикальных стеновых плит 63 установленных вдоль наружного контура перекрытия. Стеновые плиты 63 опираются на перекрестный монолитный железобетонный пояс 64, имеющий периметральный уступ 65 для восприятия горизонтальных усилий от давления грунта.

1. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что стыкуемые колонны опираются друг на друга плоскими торцами через растворный шов в пределах толщины перекрытия, при этом торцы стыкуемых колонн выполнены с косвенным армированием арматурными сетками и внутренними арматурными обоймами, кроме этого, по периметру торцов стыкуемых колонн предусмотрены вертикальные закладные детали в углублении от наружных граней колонны, при этом соединение стыкуемых колонн осуществляется посредством сварки V-образных арматурных соединительных элементов по плоскостям вертикальных закладных деталей с последующим обетонированием стыка монолитным бетоном перекрытия.

2. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что колонны выполнены с вертикальными закладными деталями установленными в углублении от наружных граней колонны по ее периметру в пределах толщины перекрытия, а надколонные плиты перекрытий выполнены с вертикально расположенными трапециевидными выпусками из стальных пластин жестко связанными с верхними и нижними стержнями анкерных арматурных каркасов, установленных по периметру сквозных отверстий, при этом соединение сборных колонн и надколонных плит перекрытия осуществляется при помощи опорных стальных соединительных элементов в виде пластин либо неравнобоких уголков, привариваемых к вертикальным закладным деталям колонн и к вертикальным трапециевидным выпускам из надколонных плит перекрытия с последующим обетонированием полости стыка между углубленной частью колонн и торцевыми поверхностями сквозных отверстий надколонных плит перекрытия, при этом торцевые поверхности сквозных отверстий надколонных плит перекрытия наклонены от вертикали, образуя клинообразную полость омоноличенного стыка.

3. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что продольные монолитные участки в виде межплитных швов выполнены вразбежку со смещением в каждом поперечном ряду стыкуемых сборных плит перекрытия на величину не менее длины анкеровки максимального диаметра рабочей арматуры сборных плит перекрытия.

4. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что сборные надколонные и сборные пролетные плиты снабжены монтажными опорными выступами и опорными площадками, причем по опорным поверхностям опорных выступов и опорных площадок установлены закладные детали из стальных пластин либо уголков, к которым приварены - образные ребра жесткости из вертикальных пластин, замоноличенных в тело сборных плит перекрытия и соединенных на сварке с продольными верхними и нижними стержнями вертикальных анкерующих каркасов.

5. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что монтажная фиксация сборных плит перекрытия между собой осуществляется при помощи стальных пластин, привариваемых к закладным деталям из швеллерных профилей и к вертикальным петлевым анкерным выпускам трапециевидной формы, располагаемых на смежных торцевых поверхностях стыкуемых плит, при этом соединение сборных плит на участках между участками монтажной фиксации выполняется путем установки вдоль контура стыка верхних и нижних горизонтальных арматурных стержней, располагаемых по внутренним углам перехлеста п-образных петлевых анкерных выпусков из торцевых граней смежных сборных плит перекрытия, при этом длина перехлеста п-образных петлевых анкерных выпусков из торцевых граней смежных плит перекрытия должна быть не менее 15d, где d - диаметр анкерных выпусков, с последующим обетонированием полости межплитного шва.

6. Сборно-монолитный железобетонный безригельный каркас по п. 5, отличающийся тем, что вертикальные петлевые анкерные выпуски трапециевидной формы, располагаемые на торцевых поверхностях стыкуемых плит на концевых участках, имеют ребра жесткости из стальных пластин, приваренных по вертикальной оси анкерных выпусков к их верхнему и нижнему стержням.

7. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что соединение сборных надколонных и сборных пролетных плит перекрытия с монолитными пролетными участками перекрытия осуществляется путем установки вдоль контура стыка горизонтальных верхних и нижних арматурных стержней, располагаемых по внутренним углам перехлеста п-образных петлевых анкерных выпусков из торцевых граней сборных плит перекрытия и вертикальных п-образных петлевых анкеров, установленных по контуру примыкания монолитных пролетных участков перекрытия со сборными плитами перекрытия, при этом длина перехлеста п-образных петлевых анкерных выпусков из торцов сборных плит перекрытия и п-образных петлевых анкеров, установленных по контуру примыкания монолитных пролетных участков со сборными плитами перекрытия, должна быть не менее 15d, где d- диаметр анкеров и анкерных выпусков.

8. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что соединение сборных плит перекрытия с монолитными пролетными участками перекрытия осуществляется при помощи вертикальных п-образных петлевых анкеров, привариваемых к вертикальным закладным деталям из швеллерных профилей, располагаемых на торцевых поверхностях сборных плит перекрытия, при этом п-образные петлевые анкеры на концевых участках имеют ребра жесткости из стальных пластин, приваренных по вертикальной оси петлевых анкеров между их верхним и нижним стержнями, с последующим обетонированием соединения монолитным пролетным участком перекрытия.

9. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн и стыкового соединения с ними, сборными пролетными плитами перекрытий, монолитными участками, объединенными между собой в единый диск перекрытия, отличающийся тем, что на балконных участках надколонных либо пролетных плит перекрытия, которые имеют отверстия в плоскости расположения наружных стен для размещения пакетов утеплителя, армирование ребер между отверстиями для размещения пакетов утеплителя осуществляется вертикальными арматурными каркасами, которые имеют ребра жесткости из стальных пластин, приваренных к верхнему и нижнему арматурным стержням вертикальных каркасов.

10. Сборно-монолитный железобетонный безригельный каркас, образованный сборными одно- и более этажными бесконсольными колоннами, монолитным перекрытием, отличающийся тем, что колонны выполнены с вертикальными закладными деталями, установленными в углублении от наружных граней колонны по ее периметру в пределах толщины перекрытия, при этом соединение сборных колонн с монолитным перекрытием осуществляется при помощи вертикальных п-образных петлевых анкеров, привариваемых к вертикальным закладным деталям колонн, причем п-образные петлевые анкеры на концевых участках имеют ребра жесткости из стальных пластин, приваренных по вертикальной оси петлевых анкеров между их верхним и нижним стержнями, с последующим обетонированием соединения бетоном монолитного перекрытия.

Изобретение относится к области строительства, в частности к сборно-монолитному железобетонному безригельному каркасу. Каркас образован сборными безконсольными колоннами, сборными надколонными плитами перекрытий со сквозными отверстиями для пропуска колонн, пролетными плитами и монолитными участками. Предложены варианты соединения колонн и плит перекрытий. Технический результат изобретения заключается в повышении несущей способности конструкций каркаса и его узловых соединений. 9 н. и 1 з.п. ф-лы, 36 ил

Каркас представляет собой систему, состоящую из стержневых несущих элементов — вертикальных (колонн) и горизонтальных балок (ригелей), объединенных жесткими горизонтальными дисками перекрытий и системой вертикальных связей.

Основное компоновочное преимущество каркасных систем в свободе планировочных решений, в связи с редко расставленными колоннами, имеющие укрупненные шаги в продольном и поперечном направлениях. Системе присуще четкое разделение на несущие и ограждающие конструкции. Несущий остов (колонны, ригели и диски перекрытий) воспринимает все нагрузки, а наружные стены выполняют роль ограждающих конструкций, воспринимая только собственный вес (самонесущие стены). Это дает возможность применять прочные и жесткие материалы - для несущих элементов каркаса, и тепло — звукоизоляционные материалы - для ограждающих. Использование высокоэффективных материалов позволяет добиться снижение веса здания, что положительно сказывается на статических свойствах здания.

Каркасными сооружают, как правило, общественные и административные здания. В последние годы строят также и каркасные многоэтажные жилые дома. В зданиях с полным каркасом несущий остов состоит из колонн и ригелей, выполняемых в виде балок для опирания конструкций перекрытий. Скрепленные между собой колонны и ригеля образуют несущие рамы, воспринимающие вертикальные и горизонтальные нагрузки здания.

Роль ограждающих элементов выполняют наружные стены Наружные стены в зданиях этого типа выполняются навесными или самонесущими .

Навесные ненесущие стены в виде навесных панелей прикрепляют к наружным колоннам каркаса. Самонесущие наружные стены опираются непосредственно на фундаменты или на фундаментные балки, устанавливаемые по столбчатым фундаментам. Самонесущие стены прикрепляются к колоннам каркаса. В зданиях с неполным каркасом наружные стены делают несущими, а колонны располагают лишь по внутренним осям здания. При этом ригели укладывают между колоннами, а иногда и между колоннами и наружными стенами. Такой конструктивный тип здания в современном строительстве имеет ограниченное применение.

Здание любого типа должно быть не только достаточно прочным: не разрушаться от действия нагрузок, но и обладать способностью сопротивляться опрокидыванию при действии горизонтальных нагрузок, и иметь пространственную жесткость, т. е. способность как в целом, так и в отдельных его частях сохранять первоначальную форму при действии проложенных сил.

Пространственная жесткость бескаркасных зданий обеспечивается несущими наружными и внутренними поперечными стенами, в том числе стенами лестничных клеток, связанными с наружными продольными стенами, а также междуэтажными перекрытиями, связывающими стены и разделяющими их по высоте здания на отдельные ярусы.

Конструктивная схемы зданий: а — с полным каркасом; б — с неполным каркасом; 1 — колонны; 2 — ригели; З — панели перекрытий; 4 — несущие наружные стены


Здание с несущими наружными стенами и внутренним каркасом: 1 – несущие стены; 2 – стены лестничной клетки; 3 – колонны; 4 стык колонн; 5 – ригели (прогоны); 6 – плита перекрытия

Здание с полным каркасом: 1 – колонны; 2 – навесные стены; 3 – ригели; 4 – стены лестничной клетки

Каркасная система наиболее часто применяется при проектировании массовых и уникальных общественных зданий различного назначения и этажности. Эта система уступает бескаркасной системе по показателям затрат труда и срокам возведения.

Каркасное здание сложнее обогреть, так как помещения получаются бо льшего объема, сложнее проектировать сеть обогревательных приборов, учитывая при этом санитарно-гигиенические требования. В принципе, у каждого отдельного помещения должен быть индивидуальный проект отопления и вентиляции, что создает определенные сложности для здания в целом, значительно удорожая стоимость проектных работ, строительства и эксплуатации. При этом перегородки обладают высокой тепловой инерционностью, намного быстрее нагреваясь и отдавая тепло.

Учитывая все сказанное, каркасные системы до последнего времени было запрещено использовать в массовой жилой застройке. Каркасные сооружения применялись, в основном в зрелищной, выставочной части общественных зданий. При этом, как правило, конструктивная схема сооружения была комплексной, то есть каркасная система сочеталась с бескаркасной в административной части – из условий экономической эффективности возведения и эксплуатации сооружения, его пожарной безопасности и экологических качеств.

Однако предпочтение, оказываемое каркасным системам, связано с функциональными требованиями к гибкости объемно-планировочных решений общественных зданий и необходимости их неоднократной перепланировки в процессе эксплуатации. С точки зрения свободы планировки, возможности создания большепролетных зальных помещений — компоновочные преимущества каркасных систем перед бескаркасными очевидны.

При этом следует помнить и о недостатках каркасной системы. В среднем, каркасные здания – в 3-7 раз дороже бескаркасных, как показывает многолетний анализ технико-экономических показателей за 70-80-е годы ХХ столетия, с учетом индустриального изготовления большинства несущих элементов.

В каркасной системе намного сложнее и дороже выполнить вертикальные преграды огню (брандмауэры ), поэтому при пожарах, как правило, выгорает целый ярус каркасного здания, ограниченный перекрытиями. Это создает дополнительные сложности при проектировании путей эвакуации.

Каркасная конструктивная система: 1 – колонны каркаса; 2 – ригели каркаса; 3 – сборный настил перекрытия; 4– наружная навесная стеновая панель

Схема каркаса многоэтажного здания: 1- колонны; 2 - ригель; 3- плиты перекрытий; 4 -панели наружных стен

Общий вид зданий с каркасной конструктивной системой: а – общественного; б – промышленного

1- опорные колонны, 2- плиты перекрытия, 3- несущие и связевые ригели, 4- диафрагмы жесткости путей эвакуации, 5- технологическая шахта, 6- лестничные марши, 7- самонесущие наружные стены

В каркасных зданиях вся нагрузка передается на каркас, то есть систему связанных между собой вертикальных элементов (колонн) и горизонтальных (прогонов и ригелей).
Каркасы , применяемые в гражданском строительстве, классифицируются по материалам :

    железобетонный каркас, выполняемый в сборном, монолитном или сборно-монолитном вариантах;

    металлический каркас, часто применяемый при строительстве общественных и многоэтажных гражданских зданий, возводимых по индивидуальным проектам;

    деревянный каркас в зданиях не выше двух этажей.

железобетонный каркас

металлический каркас

деревянный каркас

По составу и расположению ригелей в плане здания в каркасных зданиях
применяют четыре конструктивные схемы:

— I с поперечным расположением ригелей ;

— II с продольным расположением ригелей ;

— III с перекрестным расположением ригелей ;

— IV безригельная .

Использование современных массовых типовых конструкций перекрытий определяет размеры основной конструктивно-планировочной сетки осей каркаса 6х6 м (при дополнительной сетке 6х3 м).

При выборе конструктивной схемы каркаса учитывают как экономические, так и архитектурно-планировочные требования:

— элементы каркаса (колонны, ригели, диафрагмы жесткости) не должны ограничивать свободу выбора планировочного решения;

— ригели каркаса не должны выступать из поверхности потолка в жилых комнатах, а проходить по их границам.

Конструктивная схема здания с безригельным каркасом:

1 – колонны каркаса; 2 – сборный или монолитный настил перекрытия

Каркасная система зданий: а - с поперечным расположением ригелей; б - с продольным расположением ригелей; в - безригельное решение; 1 - самонесущие стены; 2 - колонны; 3 - ригели; 4 - плиты междуэтажных перекрытий; 5 - надколонная плита перекрытия; 6 - межколонные плиты; 7 - панель-вставка

Каркас с поперечным расположением ригелей целесообразен в зданиях с регулярной планировочной структурой (общежития, гостиницы), где шаг поперечных перегородок совмещается с шагом несущих конструкций.

Конструктивная схема каркасного здания с поперечным расположением ригелей

Конструктивная схема каркасного здания с продольным расположением ригелей

Четыре типа конструктивных каркасных систем:
а — с поперечным расположением ригелей;
б — с продольным расположением ригелей;

В — с перекрестным расположением ригелей;

г — с безригельным каркасом, при котором ригели отсутствуют, а плиты перекрытий опираются или на капители колонн, или непосредственно на колонны.

1- фундамент; 2 – панели ограждения; 3 – колонны; 4 – продольные ригели; 5 – плиты перекрытия (настил); 6 – поперечные ригели

Каркас с продольным расположением ригелей используют в проектировании жилых домов квартирного типа и массовых общественных зданий сложной планировочной структуры, например, в зданиях школ.

Каркас с перекрестным расположением ригелей выполняют чаще всего монолитным и используют в многоэтажных промышленных и общественных зданиях.

Безригельный каркас используют как в многоэтажных промышленных, так и в гражданских зданиях, т.к. в связи с отсутствием ригелей эта схема в архитектурно-планировочном отношении наиболее целесообразна. В данном случае ригели отсутствуют, а сборный или монолитный диск перекрытия опирается или на капители (уширения) колонн, или непосредственно на колонны.


По характеру статической работы каркасные конструктивные системы гражданских зданий делятся на:

рамные — с жестким соединением несущих элементов (колонны, ригели) в узлах в ортогональных направлениях плана здания. Каркас воспринимает все вертикальные и горизонтальные нагрузки.

рамно-связевые — с жестким соединением в узлах колонн и ригелей в одном на правлении плана здания (создание рамных конструкций) и вертикальными связями, расставленными в перпендикулярном направлении рамам каркаса. Связями служат стержневые элементы (крестовые, портальные) или стеновые диафрагмы, соединяющие соседние ряды колонн. Вертикальные и горизонтальные нагрузки воспринимаются рама ми каркаса и вертикальными пилонами жестких связей.

связевые — отличаются простотой конструктивного решения соединений колонн с ригелями, дающее подвижное (шарнирное) закрепление. Каркас (колонны, ригели) воспринимает только вертикальные нагрузки. Горизонтальные усилия передают на связи жесткости — ядра жесткости, вертикальные пилоны, стержневые элементы.

Рамная система
каркасных зданий обладает большой жесткостью, устойчивостью и создает максимальную свободу планировочных решений. Система обеспечивает надежность в восприятии нагрузок и равномерность деформаций рам, расположенных в здании в продольном и поперечном направлениях. Недостаток (при сборном железобетонном каркасе) — сложность в унификации узловых соединений из-за разных величин усилий в них по высоте здания. Такое решение железобетонного каркаса наряду со стальным находит применение в сложных грунтовых условиях и в сейсмических районах.

При изготовлении рамного каркаса из сборного железобетона применяется разрезка его несущих элементов на Г -, Т — и Н -образные элементы, позволяющая перенести узловые соединения в наименее напряженные участки — места нулевых изгибающих моментов от вертикальных нагрузок.

Рамно-связевая система обеспечивает пространственную жесткость за счет совместной работы поперечных рам, вертикальных диафрагм жесткости и перекрытий, выполняющих функцию жестких горизонтальных дисков. Вертикальные нагрузки передают на каркас как на рамную систему. Горизонтальные нагрузки, действующие перпендикулярно плоскости рам, воспринимают вертикальные диафрагмы жесткости и диски перекрытий, а нагрузки, действующие в плоскости рам, воспринимает рамно-связевой блок, состоящий из вертикальных диафрагм жесткости и рам каркаса.

В результате проведенных теоретических исследований доказано, что рамно-связевая система удовлетворяет условию минимального расхода материала в несущих вертикальных конструкциях при нулевой жесткости поперечных рам, то есть когда система превращается в чисто связевую.

Связевая система
все вертикальные нагрузки передает на стержневые элементы каркаса (колонны и ригели), а горизонтальные усилия воспринимают жесткие вертикальные связевые элементы (стеновые диафрагмы и ядра жесткости), объединенные между собой дисками перекрытий. В связевом каркасе ограничена прочность и жесткость стыков ригелей с колоннами. Узлы конструируют податливами с помощью стальных связей («рыбок»), ограничивающих защемление.

Внедрение связевой системы в производство элементов сборного железобетонного каркаса позволило провести широкую унификацию его основных элементов (колонн и ригелей) и их узловых соединений.

В 80-х годах прошлого столетия была разработана номенклатура индустриальных железобетонных изделий серии 1.020-1 (Серия 1.020-1/87 ), позволяющая возводить как гражданские, так и промышленные каркасно-панельные здания любой конфигурации и этажности. В состав номенклатуры серии помимо колонн и ригелей, включены панели перекрытий, диафрагм жесткости и наружных стен.

Из унифицированных элементов могут быть запроектированы каркасы с продольным и поперечным расположением ригелей.

Габаритные схемы компонуются на следующих условиях:

    оси колонн, ригелей и панелей диафрагм жесткости совмещены с модульными осями здания;

    шаг колонн в направлении пролета плит перекрытий равен 3,0; 6,0; 7,2, 9,0 и 12,0 м.

    шаг колонн в направлении пролета ригелей соответствует 3,0; 6,0; 7,2 и 9,0м.

    высота этажей в соответствии с назначением и укрупненным модулем ЗМ составляет 3,3; 3,6; 4,2; 6,0 и 7,2м.

Кроме того для квартирных и специализированных жилых домов (пансионаты, гостиницы, общежития и т.п.) высота этажей принимается равной 2,8 м.

Компоновка диафрагм жесткости может быть разнообразной, но предпочтительнее устройство пространственных связевых систем открытого или замкнутого сечений.

Пространственная жесткость каркасных зданий обеспечивается:

    совместной работой колонн, связанных между собой ригелями и перекрытиями и образующих геометрически не изменяемую систему;

    установкой между колоннами стенок жесткости или стальных вертикальных связей;

    сопряжением стен лестничных клеток с конструкциями каркаса;

    укладкой в междуэтажных перекрытиях (между колоннами) панелей-распорок.

Конструктивные элементы. Колонны имеют высоту в 2-4 этажа, что позволяет в зданиях, с соответствующей этажностью, применять бесстыковые колонны.

Наряду с бесстыковыми колоннами в номенклатуру включены следующие типы колонн:

    нижние высотой в два этажа и расположением низа колонны ниже нулевой отметки на 1,1м.;

    средние — высотой в три-четыре и верхние в один-три этажа.

Предусмотрены колонны сечением 30×30 см для зданий высотой до 5-ти этажей и колонны сечением 40х40см для всех остальных. Колонны выпускаются двухконсольнымии и одноконсольными. Двухконсольные колонны устанавливают по средним и крайним рядам при навесных панелях наружных стен. Одноконсольные колонны располагают по крайним рядам при самонесущих наружных стенах и по средним рядам при одностороннем примыкании стен-диафрагм жесткости в лестничных клетках. Стык осуществляется на сварке выпусков арматуры с последующим омоноличиванием и расположением его выше плоскости консоли на 1050 мм.

Ригели — таврового сечения с полкой понизу для опирания плит перекрытия, что уменьшает его конструктивную высоту. Стык ригеля с колонной выполняет со скрытой консолью и приваркой к закладным деталям консоли и колонны (частичное защемление).

Перекрытия — многопустотные плиты высотой 220 мм и пролетом до 9,0 м. Плиты типа 2Т применяют для пролетов 9 и 12 м. Элементы перекрытий разделяют на рядовые и связевые (плиты распорки). Связевые плиты перекрытия устанавливают между колоннами в направлении перпендикулярном ригелям, обеспечивая их устойчивость.

Перекрытия испытывают поперечный изгиб от вертикальных нагрузок и изгиб в своей плоскости от горизонтальных (ветровых, динамических) воздействий.

Необходимая жесткость горизонтального диска перекрытия, собираемого из сборных железобетонных элементов, достигается установкой связевых плит-распорок между колоннами, сваркой закладных соединительных элементов и устройством шпоночных швов из цементного раствора между отдельными плитами. Полученный жесткий горизонтальный диск, воспринимая все нагрузки, включает в совместную работу вертикальные диафрагмы жесткости.

Стены — диафрагмы жесткости монтируют из бетонных панелей высотой в этаж, толщиной 140 мм. и длиной, соответствующей расстоянию между колоннами в пределах, которых они установлены. При шаге колонн 7,2 и 9,0 м стены-диафрагмы проектируют составными из двух-трех панелей, с координационными размерами по ширине 1,2, 3,0 и 6,0 м. Они могут быть глухими или с одним дверным проемом. Элементы диафрагм жесткости между собой и элементами каркаса соединяют сваркой закладных деталей, не менее чем в двух местах по каждой стороне панели с последующим замоноличиванием.

Шаг диафрагм определяется расчетом, но не превышает 36,0 м.

Панели наружных стен могут быть запроектированы самонесущими или ненесущими (навесными) конструкциями. Разрезка стен на панели — двухрядная. В номенклатуру входят поясные простеночные, под карнизные, парапетные, цокольные панели.

Панели самонесущих стен устанавливают по цементно-песчаному раствору на цокольные или простеночные панели и крепят поверху к закладным деталям колонн. Панели ненесущих стен навешивают на ригели, консоли или опорные металлические столики колонн и закрепляют в плоскости перекрытия.

Привязка панелей самонесущих и несущих стен к каркасу единая — с зазором 20 мм между наружной гранью колонны и внутренней гранью панели наружной стены.

Изоляция стыков панелей решена по принципу закрытого стыка

Компактные в плане отапливаемые здания длиной до 150 м проектируют без температурных швов. Здания с изрезанным очертанием плана, приводящее к ослаблению горизонтальных дисков перекрытий, расчленяют на температурные блоки, длина которых увязана с членением объемной формы здания, но не превышает 60 м.

Как и в серии 1.020.1 каркас КМС-К1 собирают из колонн, ригелей, плит перекрытий, панелей жесткости и навесных панелей наружных стен.


Фрагмент фасада каркасного здания серии 1.020-1: А — схема разрезки наружной стены на панели; а — герметизация вертикальных стыков; б — крепление верха панели к колонне; \ — защитный слой; 2 — эластичная мастика; 3 — упругий шнур (гернит); 4 — колонна; 5 — кирпичная кладка; 6 — цементный раствор; 7 — наружная стеновая панель; 8 — стальные закладные детали; 9 — стальные соединительные элементы

Колонны — выполняют одно- и двух-этажными, единого сечения 400×400 мм, а их несущая способность меняется с изменением марок бетона и процента армирования переходом от гибкой (стержни) к жесткой (стальные профили) арматуре. В серии предусмотрены колонны рядовые, фасадные и колонны с вылетом консолей до 1,2 или 1,8 м., служащие опорами для плит балконов и лоджий.

Стык колонны располагают на 710 мм выше плиты перекрытия, что упрощает монтаж. При монтаже колонн применяют специальные кондукторы, обеспечивающие соосность. Соединение осуществляется ванной сваркой плоских торцов колонн, с последующей инъекцией цементного раствора.

Ригели — таврового сечения высотой 450, 600 и 900 мм (последний для пролетов в 12,0м). Колонну соединяют с ригелем при помощи его опирания на скрытую (в высоте ригеля) консоль и с частичным защемлением установленной по верхней полки ригеля специальной фасонки — «рыбки», а также сваркой с закладными элементами консоли колонны. Значения воспринимаемых таким узлом изгибающих моментов и растягивающих усилий ограничены пределом текучести «рыбки». Поэтому в расчетах при восприятии вертикальных нагрузок защемление ригеля на опоре не учитывают, рассматривая его как шарнирное соединение.

Различают ригели рядовые и фасадные. Ригель фасадный имеет Z -образную форму, которая диктуется особенностью его работы — опирание плит перекрытий на нижнюю полку с одной стороны и навеской наружных стеновых панелей на верхнею полку с другой стороны.

Перекрытия — выполняют из многопустотных настилов высотой в 220 мм. Настилы различают в соответствии с размещением в плане — рядовые, фасадные, настилы-распорки, сантехнические и доборные.

Для создания единого диска перекрытия боковые поверхности настилов имеют шпоночные углубления, которые (после их раскладки) замоноличивают, создавая шпоночные швы, воспринимающие сдвигающие усилия..

Стены жесткости — проектируют из железобетонных панелей высотой на этаж и толщиной в 180 мм. Они имеют одну или две полки для опирания настилов перекрытий. Соединение с несущими элементами каркаса осуществляют при помощи стальных сварных связей числом не менее двух по каждой стороне.

Панели наружных стен — могут иметь горизонтальную или вертикальную разрезку по фасадной плоскости здания.

При двухрядной (горизонтальной) разрезки панели наружных стен подразделяют на поясные (ленточные), простеночные и угловые.

Координационные размеры панелей наружных стен горизонтальной разрезки по длине соответствуют шагу колонн, а по высоте составляют — 1,2; 1,5; 1,8 и 3,0 м. Простеночные панели могут быть высотой в — 1,5; 1,8 и 2,1м, а шириной кратны модулю 300 мм.

При вертикальной разрезке — все размеры панелей по длине и высоте кратны модулю 300 мм.

Узел опирания панелей наружных стен унифицирован для разных систем разрезок на панели фасадных плоскостей. Панели опирают на несущую конструкцию перекрытия (ригель, или настил) на глубину в 100 мм и приваривают при помощи закладных и соединительных элементов на расстоянии 600 мм в плане от оси колонны. Верх панели крепят к колонне, так же с помощью сварки соединительных элементов.

Горизонтальные стыки панелей наружных стен осуществляются в четверть с нахлесткой в 75мм. Изоляция вертикальных и горизонтальных сопряжений панелей выполняется по принципу закрытого стыка

Система позволяет создать многовариантные объемно-планировочные решения за счет применения колонн с консолями больших вылетов (1,2 — 1,8 м) для создания лоджий, консольных ригелей с вылетом до 3,0 м, образующих выступающие объемы. Возможно устройство зальных помещений с пролетами в 18,0-24,0 м. Разнообразие архитектурных композиций зданий достигается применением двухрядной (горизонтальной) и вертикальной разрезки, так же различных вариантов защитно-отделочных слоев наружных стеновых панелей.


Каркас серии KMC — К1. Основные планировочные ситуации стен жесткостей и несущих конструкций перекрытий: Р — ригель рядовой; РФ — ригель фасадный; НВ — настил; НРВ -настил-распорка; НРФ — настил-распорка фасадная; МФ — фасадная стеновая панель; СЖ — стенка жесткости; 1 — колонна с плоскими стальными торцами; 2 — полуавтоматическая сварка под слоем флюса; 3 — стальная центрирующая прокладка; 4 — закладная деталь; 5 — соединительная планка; 6 — цементный раствор; 7 — соединительная пластина; 8 — монолитный армированный бетон; 9 — закладная деталь

Безригельный каркас. Основной архитектурный недостаток каркасных систем для применения их в гражданском строительстве являются выступающие в интерьер из плоскости перекрытий балки-ригели. Существуют конструктивные схемы каркасов позволяющие исключить этот недостаток:

Система, формирующаяся из сборных плит сплошного сечения, опираемых на колонны в угловых точках сетки колонн (система КУБ);

Каркасная система с предварительно-напряженной арматурой в скрытых риге лях, образуемых в построечных условиях (система КПНС).

Система безригельного каркаса КУБ - сборный безкапительный каркас, состоящий из колонн квадратного сечения и плоских плит перекрытий.

Сетки колонн 6×3 и 6×6 метров при необходимости могут увеличиваться до размеров 6х9 и 9х12 метров. Сечение колонн 30×30 см и 40×40 см высотой в один или несколько этажей с максимальной высотой до 15,3 м.

Плиты перекрытия в плане размером 2,8×2,8 м толщиной от16 до20 см. В зависимости от расположения, подразделяются на надколонные, межколонные и плиты-вставки. Членение перекрытия на сборные элементы сделано с таким расчетом, чтобы стыки плит располагались в зонах с наименьшей величиной (приближаемая к нулю) изгибающих моментов от вертикальных нагрузок.

Последовательность монтажа перекрытия на смонтируемые колонны ведется в следующем порядке: — устанавливаются и привариваются к арматуре колонн надколонные плиты, затем межколонные и, наконец, плиты-вставки. Межколонные и плиты-вставки имеют шпонки, позволяющие легко осуществить их соединения на сварке. После замоноличивания стыков создается пространственная жесткая конструкция.


Система безригельного каркаса (КУБ): а — общий вид; б — схема последовательности монтажа; в — схема разреза здания

Преимущество системы в отсутствии выступающих элементов в потолочной плоскости и в простоте монтажа, с помощью легких мобильных кранов.

Безригельная рамная или рамно-связевая каркасная система гражданских зданий высотой до 16 этажей рассчитана на вертикальные нагрузки на перекрытие в 1250 кг/ м 2 . При больших нагрузках (2000 кг/ м 2) ограничивают этажность здания 9-тью этажами.

Система обладает архитектурно-планировочными и конструктивными достоинствами. Гладкий потолок дает возможность гибко решать планировку внутреннего пространства создавать трансформируемые помещения. Консольные вылеты перекрытий обеспечивают вариантность пластических решений фасадов.

Безригельный каркас универсален — он с успехом применим, как в жилых зданиях, так и общественных (детских садах, школах, торговых предприятиях, спортивных и зрелищных) сооружениях и пр.

Система со скрытыми ригелями в плоскости перекрытия (КПНС) проектируется по связевой схеме из сборных элементов: колонн, плит, перекрытий и стен диафрагм жесткости. Связь между сборными элементами перекрытия осуществляется в результате устройства в построечных условиях монолитного ригеля с канатной напряженной арматурой, пропущенной через сквозные отверстия в колонне в ортогональных направлениях. Предварительное напряжение арматуры осуществляется на уровне этажных перекрытий, создавая двухосное обжатие плит перекрытия

Плиты перекрытия имеют высоту в 30 см и состоят из верхней плиты, толщиной в 6 см, и нижней — 3 см и перекрещенных бортовых ребер. При монтаже плиты перекрытий укладывают на временные капители колонн и опоры, которые устанавливают уже на смонтированный нижний уровень. Плиты перекрытия могут быть выполнены на ячейку с опиранием на колонны по 4 углам или разбиты на две плиты, соединенные монолитным армированным швом. Конструкция, собранная из сборных элементов колонн и плит перекрытий — работает как единая статическая система, воспринимающая все силовые воздействия, за счет сил сцепления, возникающих между отдельными сборными элементами, и напряжений стальных канатов.


Каркас со скрытыми ригелями (КПНС): А — схема сборки; Б — узел плана перекрытия у колонны; 1 — монолитный ригель; 2 — шов омоноличивания; 3 — канатная натяжная арматура: 4 — плита перекрытия; 5 – колонна

Значительным шагом назад от системы надежности и долговечности индустриального производства конструктивных элементов каркасных зданий стало возвращение на строительные площадки «мокрых» процессов с начала «нулевых» годов. Монолитные балочные и безбалочные каркасы имеют низкую степень технологичности, не позволяют возводить ограждающие конструкции апробированных типов.

Приемы конструктивных решений зданий

Проектирование конструкций здания любого назначения начинают с решения основной принципиальной задачи – выбора конструктивной системы здания исходя из функциональных и технико-экономических требований.

Конструктивная система – это взаимосвязанная совокупность вертикальных и горизонтальных несущих конструкций здания, которые, воспринимая все приходящиеся на него нагрузки и воздействия, совместно обеспечивают прочность, пространственную жесткость и устойчивость сооружения.

Выбор конструктивной системы определяет роль каждого несущего конструктивного элемента в пространственной работе здания.

Горизонтальные несущие конструкции (покрытия и перекрытия) воспринимают все приходящиеся на них вертикальные нагрузки и передают их вертикальным несущим конструкциям (стенам, колоннам и др.), которые, в свою очередь, передают нагрузки через фундамент на грунт (основание здания). Горизонтальные несущие конструкции, как правило, играют в здании роль жестких дисков – горизонтальных диафрагм жесткости. Они воспринимают и перераспределяют горизонтальные нагрузки и воздействия (ветровые, сейсмические) между вертикальными несущими конструкциями.

Горизонтальные несущие конструкции гражданских зданий высотой более двух этажей, как правило, однотипны и представляют собой железобетонный диск – сборный (из отдельных железобетонных сплошных, многопустотных или ребристых плит), сборно-монолитный или монолитный. Также в многоэтажных промышленных зданиях (реже – в гражданских зданиях) используют перекрытия по металлическим балкам (балочные) и профилированному стальному настилу. Исходя из противопожарных требований в ряде случаев такие перекрытия впоследствии замоноличивают бетоном.

Вертикальные несущие конструкции по сравнению с горизонтальными более разнообразны. Различают следующие виды вертикальных несущих конструкций:

Стержневые (стойки каркаса);

Плоскостные (стены, диафрагмы);

Объемно-пространственные элементы высотой в этаж (объемные блоки);

Внутренние объемно-пространственные полые стержни (открытого или закрытого сечения) на высоту здания (стволы жесткости);

Объемно-пространственные внешние несущие конструкции на высоту здания в виде тонкостенной оболочки замкнутого сечения (оболочки).

Соответственно виду вертикальной несущей конструкции получили наименование пять основных конструктивных систем зданий:

- каркасная ;

- бескаркасная (стеновая);

- объемно-блочная;

- ствольная;

- оболочковая.

Наряду с основными широко применяют комбинированные конструктивные системы . В этих системах вертикальные несущие конструкции компонуют, сочетая различные виды несущих элементов – стены и колонны, стены и объемные блоки и др.

В соответствии с функциональными требованиями к объемно-планировочному решению в зданиях могут сочетаться различные структуры пространственных ячеек. Это влечет за собой и сочетание различных конструктивных систем в одном здании , например, бескаркасной для фрагмента здания ячеистой структуры и каркасной – для зальных помещений. Такое решение называется смешанной конструктивной системой здания .

Выбор конструктивной системы при проектировании основан на объемно-планировочных, архитектурно-композиционных и экономических требованиях, в соответствии с которыми определились области рационального применения каждой из конструктивных систем.

Бескаркасная (стеновая) система (рис. 3.1) – основа проектирования жилых домов различной этажности и назначения (квартирные дома, общежития, гостиницы, пансионаты и др.) и для разных инженерно-геологических условий. Выбор этой системы связан с относительной стабильностью объемно-планировочных решений жилых зданий и с ее технико-экономическими преимуществами. Благодаря этому расширяется применение бескаркасной системы и для массовых типов общественных зданий (школ, детских дошкольных учреждений, поликлиник и др.).

Рис. 3.1. Бескаркасная (стеновая) конструктивная система

1 – наружная несущая стена;

2 – внутренняя несущая стена;

3 – сборный настил перекрытия

Каркасная система (см. рис. 3.2) наиболее часто применяется при проектировании массовых и уникальных общественных зданий различного назначения и этажности. Эта система уступает бескаркасной системе по показателям затрат труда и срокам возведения. Однако предпочтение, оказываемое каркасным системам, связано с функциональными требованиями к гибкости объемно-планировочных решений общественных зданий и необходимости их неоднократной перепланировки в процессе эксплуатации. С точки зрения этих требований компоновочные преимущества каркасных систем перед бескаркасными очевидны.

Рис. 3.2. Каркасная конструктивная система

1 – колонны каркаса; 2 – ригели каркаса; 3 4 – наружная навесная стеновая панель

Общий вид каркасных конструктивных систем общественного и промышленного зданий показаны на рис. 3.3.

Рис. 3.3. Общий вид зданий с каркасной конструктивной системой

а – общественного;б – промышленного

Объемно-блочная система (см. рис. 3.4) применяется при проектировании жилых зданий различных типов высотой до 16 этажей. Главное преимущество такой конструктивной системы – сокращение затрат труда при постройке зданий.


Рис. 3.4. Объемно-блочная конструктивная система

1 – монолитный железобетонный объемный блок (размером на комнату)

Ствольная система (см. рис. 3.5) обеспечивает свободу планировочных решений, поскольку пространство между стволом жесткости и наружными ограждающими конструкциями остается свободным от промежуточных опор. Относительно высокая жесткость здания позволяет использовать такую систему при проектировании жилых и общественных зданий, как правило, башенного типа с компактной (квадратной, круглой и т.п.) формой плана, высотой более 20 этажей. Возможно применение ствольной системы и для протяженных зданий, но в этих случаях конструктивная система таких зданий компонуется из нескольких стволов.

Наиболее целесообразны компактные в плане многоэтажные здания ствольной системы в сейсмостойком строительстве, а также в условиях неравномерных деформаций основания (на просадочных грунтах, над горными выработками и т.п.).


Рис. 3.5. Ствольная конструктивная система

1 – сборный или монолитный ствол жесткости; 2 – консольные междуэтажные перекрытия

Оболочковая система присуща уникальным и высотным (более 40 этажей) зданиям, поскольку обеспечивает существенной увеличение жесткости сооружения. Применение такой системы в качестве основной (а также в комбинации с каркасом) обеспечивает свободу планировочных решений, что позволяет применять ее для жилых и общественных зданий. Однако чаще всего такие здания проектируют многофункциональными. Оболочковая конструкция может совмещать несущие и ограждающие функции или дополняться наружными ограждающими конструкциями.

Рис. 3.6. Пример здания с оболочковой конструктивной системой

Помимо основных типообразующих признаков конструктивной системы, т.е. несущих вертикальных элементов, существуют дополнительные классификационные признаки внутри каждой из систем. Ими служат геометрические признаки – ­­­­­­­­­­­размещение вертикальных несущих конструкций в плане здания и расстояния между ними. Способ размещения несущих горизонтальных и вертикальных конструкций здания в пространстве называют конструктивной схемой.

При бескаркасной (стеновой) конструктивной системе , исходя из основных геометрических признаков, можно выделить следующие виды конструктивных схем (см. рис. 3.7):

- I продольно-стеновая ;

- II поперечно-стеновая :

а) с большим шагом несущих стен (2,4 ÷ 4,5 м);

б) с узким шагом несущих стен (6,0 ÷ 7,2 м);

в) со смешанным шагом ;

- III перекрестно-стеновая.

Рис. 3.7. Конструктивные схемы бескаркасных зданий

а – продольно-стеновая;

б – поперечно-стеновая;

в – перекрестно-стеновая

Продольно-стеновая конструктивная схема (см. рис. 3.7 а ) традиционна в проектировании зданий малой, средней и повышенной этажности. Редкое расположение поперечных стен-диафрагм жесткости (через 25 – 40 м) обеспечивает свободу планировочных решений в зданиях, поэтому эту схему применяют при проектировании жилых и общественных зданий различного назначения.

Поперечно-стеновая конструктивная схема (см. рис. 3.7 б ) менее гибкая в планировочном отношении, чем продольно-стеновая схема. Поэтому наиболее часто ее применяют при строительстве жилых зданий, реже – массовых типов общественных зданий (детских учреждений, школ и т.п.). Поперечно-стеновая схема (особенно с большим шагом поперечных несущих стен) допускает возможность частичной перепланировки внутреннего объема зданий в процессе эксплуатации, а также размещения небольших встроенных нежилых помещений в первых этажах жилых домов.

в ) присущи малые размеры конструктивно-планировочных ячеек (около 20 м 2), что ограничивает область ее применения только жилыми зданиями. Частое расположение поперечных стен делает трансформацию планов зданий трудноосуществимой. Разнообразию планировочных решений в проектировании домов на основе этой схемы способствует использование нескольких размеров шагов поперечных стен (например, 3,0; 3,6 и 4,2 м) в различных сочетаниях. Благодаря высокой пространственной жесткости перекрестно-стеновая схема широко распространена в проектировании многоэтажных зданий, а также зданий, строящихся в сложных геологических условиях, а также в сейсмически опасных районах.

В каркасных зданиях применяют четыре конструктивные схемы:

- I с поперечным расположением ригелей ;

- II с продольным расположением ригелей ;

- III с перекрестным расположением ригелей ;

- IV безригельная .

Использование современных массовых типовых конструкций перекрытий определяет размеры основной конструктивно-планировочной сетки осей каркаса 6 ´ 6 м (при дополнительной сетке 6 ´ 3 м).

При выборе конструктивной схемы каркаса учитывают как экономические, так и архитектурно-планировочные требования:

Элементы каркаса (колонны, ригели, диафрагмы жесткости) не должны ограничивать свободу выбора планировочного решения;

Ригели каркаса не должны выступать из поверхности потолка в жилых комнатах, а проходить по их границам.

Каркас с поперечным расположением ригелей (см. рис. 3.8) целесообразен в зданиях с регулярной планировочной структурой (общежития, гостиницы), где шаг поперечных перегородок совмещается с шагом несущих конструкций.


Рис. 3.8. Конструктивная схема каркасного здания с поперечным расположением ригелей

Каркас с продольным расположением ригелей (см. рис. 3.9) используют в проектировании жилых домов квартирного типа и массовых общественных зданий сложной планировочной структуры, например, в зданиях школ.

Рис. 3.9. Конструктивная схема каркасного здания с продольным расположением ригелей

Каркас с перекрестным расположением ригелей выполняют чаще всего монолитным и используют в многоэтажных промышленных и общественных зданиях.

Безригельный каркас используют как в многоэтажных промышленных, так и в гражданских зданиях, т.к. в связи с отсутствием ригелей эта схема в архитектурно-планировочном отношении наиболее целесообразна.

Рис. 3.10. Конструктивная схема здания с безригельным каркасом

1 – колонны каркаса; 2 – сборный или монолитный настил перекрытия

В данном случае ригели отсутствуют, а сборный или монолитный диск перекрытия опирается или на капители (уширения) колонн, или непосредственно на колонны (см. рис. 3.10).

В комбинированных конструктивных системах может применяться различное сочетание вертикальных несущих конструкций, которые используются в основных конструктивных системах. На практике наиболее распространены следующие виды конструктивных схем в зданиях с комбинированными системами:

1) Неполный каркас (см. рис. 3.11). Такую схему выбирают исходя из местных сырьевых и производственных условий применения массивных конструкций наружных стен.

Рис. 3.11. Конструктивная схема здания с неполным каркасом (план)

а – плиты перекрытия опираются на ригели каркаса и на наружную несущую стену;

б – ригели каркаса опираются на колонны и на наружную несущую стену

1 – колонны каркаса; 2 – ригели; 3 – сборный настил перекрытия; 4 – несущая стена

2) Схема, в которой каркас расположен в пределах первого этажа (или нескольких этажей), а выше здание имеет стеновую конструктивную систему (см. рис. 3.12).

Рис. 3.12. Пример комбинированной конструктивной системы (разрез)

1 – колонны каркаса; 2 – продольно расположенные ригели; 3 – сборный настил перекрытия; 4 – несущие стены

Конструктивная система здания представляет собою совокупность взаимосвязанных несущих конструкций здания, обеспечивающих его прочность, пространственную жесткость и надежность в эксплуатации. Выбор конструктивной системы здания определяет статическую роль каждой из его конструкций. Материал конструкций и технику их возведения определяют при выборе строительной системы здания.

Несущие конструкции здания состоят из взаимосвязанных вертикальных и горизонтальныхэлементов.

Горизонтальные несущие конструкции - воспринимают все приходящиеся на них вертикальные нагрузки и поэтажно передают их вертикальным несущим конструкциям (стенам, колоннам). Вертикальные конструкции, в свою очередь, передают нагрузку на фундамент здания.

Системы перекрытий с древности проектировались из стереотипного подхода к компоновке балочной клетки, т.е. состояли из балок (ригелей) и настила, так конструктивно решаются и деревянные перекрытия. Затем появляются железобетонные ребристые плиты перекрытия, в которых этот подход уже слит в один конструктивный элемент. Появившиеся позднее плоские пустотные плиты перекрытий - являются значительным шагом в проектировании систем зданий нового типа.

В индустриальных жилых зданиях, сравнении с традиционными сооружениями, имевшими смешанные покрытия, включавшие фрагменты деревянных перекрытий, горизонтальные несущие конструкции впервые начинают выполнять роль диафрагм жесткости, кроме того, перекрытия воспринимают горизонтальные нагрузки и воздействия (ветровые, сейсмические и др.) и передают усилия от этих воздействий на вертикальные конструкции.

Передача горизонтальных нагрузок и воздействий осуществляется двояко: либо с распределением их на все вертикальные конструкции здания, либо на отдельные специальные вертикальные элементы жесткости (стены, диафрагмы жесткости, решетчатые ветровые связи или стволы жесткости). Индустриальный тип зданий предоставляет и промежуточные решения - передача нагрузки возможна с распределением горизонтальных нагрузок в различных пропорциях между элементами жесткости и конструкциями, работающими на восприятие вертикальных нагрузок.

Перекрытия - диафрагмы жесткости обеспечивают совместность горизонтальных перемещений вертикальных несущих конструкций от ветровых и сейсмических воздействий. Возможность совместности и выравнивания перемещений достигается жестким сопряжением горизонтальных несущих конструкций с вертикальными.

Как уже отмечалось ранее, при сокращении строительных объемов зданий, горизонтальные несущие конструкции жилых домов высотой более двух этажей в соответствии с требованиями противопожарных норм выполняются трудно сгораемыми или несгораемыми. Этим требованиям, а также требованиям экономической страты наиболее полно удовлетворяют железобетонные конструкции, что и определило их массовое применение в качестве горизонтальных несущих элементов всех типов зданий. Перекрытия обычно представляют собой железобетонную плиту - сборную, сборно-монолитную или монолитную.

Вертикальные несущие конструкции различают по виду конструкций, который служит определяющим признаком и для классификации конструктивных систем. На рис. 2 даны основные типологические признаки жилого дома, вертикальные несущие конструкции которого представляют собою сплошную вертикальную плоскость стен. При использовании колонн в качестве главных вертикальных несущих элементов конструкций уже на первом этапе индустриализации позволило получить четыре конструктивных схемы серийного жилого дома: с поперечным расположением ригелей; с продольным расположением ригелей; с перекрестным расположением ригелей; безригельное решение.

Индустриализация позволила не только с новой точки зрения взглянуть на работу перекрытий, но и значительно расширить типологию вертикальных несущих конструкций. При развитии серийного жилищного строительства отдельными группами выделяются следующие виды вертикальных несущих конструкций: фундамент блочный каркасный развертка

плоскостные (стены);

стержневые сплошного сечения (стойки каркаса);

объемно-пространственные(объемные блоки);

объемно-пространственные внутренние несущие конструкции на высоту зданий в виде тонкостенных стержней открытого или замкнутого профиля (стволы жесткости). Ствол жесткости обычно располагают в центральной части здания; во внутреннем пространстве ствола размещают лифтовые, вентиляционные шахты и другие коммуникации. В зданиях большой протяженности предусматривают несколько стволов жесткости;

объемно-пространственные внешние несущие конструкции на высоту здания в виде тонкостенной оболочки замкнутого профиля, образующей одновременно и наружную ограждающую конструкцию здания. В зависимости от архитектурного решения внешняя несущая оболочка может иметь призматическую, цилиндрическую, пирамидальную или другую форму.

Соответственно видам вертикальных несущих конструкций различают пять основных конструктивных систем зданий: каркасную, бескаркасную (стеновую), объемно-блочную, ствольную и оболочковую, иначе называемую периферийной

Выбор вертикальных несущих конструкций, характера распределения горизонтальных нагрузок и воздействий между ними - один из основных вопросов при компоновке конструктивной системы. Он также оказывает влияние на планировочное решение, архитектурную композицию и экономическую целесообразность проекта. В свою очередь на выбор системы оказывают влияние типологические особенности проектируемого здания, его этажность и инженерно-геологические условия строительства.

Каркасная система с пространственным рамным каркасом применяется преимущественно в строительстве многоэтажных сейсмостойких зданий, высотой более девяти этажей, а также в обычных условиях строительства при наличии соответствующей производственной базы. Каркасная система - основная в строительстве общественных и промышленных зданий. В жилищном строительстве объем ее применения ограничен не только по экономическим соображениям. Основа противопожарных требований при проектировании жилых зданий - последовательное создание вертикальных преград огню -брандмауэров. В сооружении каркасного типа создание брандмауэров велось по встраиванию между колоннами несгораемых вертикальных диафрагм жесткости. Таким образом, заранее ограничивались возможности пространственной планировки, основного преимущества каркасных систем.

Бескаркасная система - самая распространенная в жилищном строительстве, ее используют в зданиях различных планировочных типов высотой от одного до30 этажей.

Объемно-блочная система зданий в виде группы отдельных несущих столбов из установленных друг на друга объемных блоков применялась для жилых домов высотой до 12 этажей в обычных и сложных грунтовых условиях. Столбы объединялись друг с другом гибкими или жесткими связями.

Ствольную систему применяют в зданиях высотой более 16 этажей. Наиболее целесообразно применение ствольной системы для компактных в плане многоэтажных зданий, особенно в сейсмостойком строительстве, а также в условиях неравномерных деформаций основания (на просадочных грунтах, над горными выработками и т. п.).

Оболочковая система присуща уникальным высотным зданиям жилого, административного или многофункционального назначения.

Наряду с основными конструктивными системами широко применяют комбинированные, в которых вертикальные несущие конструкции компонуют из различных элементов - стержневых и плоскостных, стержневых и ствольных и т. п.

Система с неполным каркасом, основанная на сочетании несущих стен и каркаса, воспринимающих все вертикальные и горизонтальные нагрузки. Система применялась в двух вариантах: с несущими наружными стенами и внутренним каркасом либо с наружным каркасом и внутренними стенами. Первый вариант использовался при повышенных требованиях к свободе планировочных решений здания, второй - при целесообразности применения ненесущих легких конструкций наружных стен и при проектировании зданий средней и повышенной этажности.

Каркасно-диафрагмовая система основана на разделении статических функций между стеновыми (связевыми) и стержневыми элементами несущих конструкций. На стеновые элементы (вертикальные диафрагмы жесткости) передается всю или большую часть горизонтальных нагрузок и воздействий, на стержневые (каркас) - преимущественно вертикальные нагрузки. Система получила наиболее широкое применение в строительстве многоэтажных каркасно-панельных жилых домов в обычных условиях и в сейсмостойком строительстве.

Каркасно-ствольная система основана на разделении статических функций между каркасом, воспринимающим вертикальные нагрузки, и стволом, воспринимающим горизонтальные нагрузки и воздействия. Она применялась при проектировании высотных жилых зданий.

Каркасно-блочная система основана на сочетании каркаса и объемных блоков, причем последние могут получать применение в системе в качестве ненесущих или несущих конструкций. Ненесущие объемные блоки используют для поэтажного заполнения несущей решетки каркаса. Несущие устанавливают друг надруга в три-пять ярусов на горизонтальных несущих платформах (перекрытиях) каркаса, расположенных с шагом в три-пять этажей. Система применялась в зданиях выше 12 этажей.

Блочно-стеновая (блочно-панельная) система основана на сочетании несущих столбов из объемных блоков и несущих стен, поэтажно связанных друг с другом дисками перекрытий. Применялась в жилых зданиях высотой до 9 этажей в обычных грунтовых условиях.

Ствольно-стеновая система сочетает несущие стены и ствол с распределением вертикальных и горизонтальных нагрузок между этими элементами в различных соотношениях. Применялась при проектировании зданий выше 16 этажей.

Ствольно-оболочковая система включает в себя наружную несущую оболочку и несущий ствол внутри здания, работающих совместно на восприятие вертикальных и горизонтальных нагрузок. Совместность перемещений ствола и оболочки обеспечивается горизонтальными несущими конструкциями отдельных ростверковых этажей, расположенных по высоте здания. Система применялась при проектировании высотных зданий.

Каркасно-оболочковая система сочетает в себе наружную несущую оболочку здания с внутренним каркасом при работе оболочки на все виды нагрузок и воздействий, а каркаса - преимущественно на вертикальные нагрузки. Совместность горизонтальных перемещений оболочки и каркаса обеспечивается так же, как в зданиях оболочково-ствольной системы. Применялась при проектировании высотных зданий.

Понятие "конструктивная система" - обобщенная конструктивно-статическая характеристика здания, не зависящая от материала, из которого оно возводится, и способа возведения. Например, на основе бескаркасной конструктивной системы могло быть запроектировано здание со стенами деревянными рублеными, кирпичными, бетонными (крупноблочными, панельными или монолитными).

В свою очередь, каркасная система может быть осуществлена в деревянных, стальных или железобетонных конструкциях. Возникали варианты и при использовании различных материалов заполнения ячеек, образованных несущими элементами в каркасных или ствольных зданиях. Для этой цели использовались любые элементы - от мелкоразмерных до объемно-блочных.

Несущая часть оболочкового здания может представлять собой раскосную или безраскосную пространственную стальную ферму, монолитную железобетонную оболочку с регулярно расположенными проемами, сборно-монолитную железобетонную решетку и так далее. Многовариантными являлись и комбинированные конструктивные системы. Области и масштабы применения в строительстве отдельных конструктивных систем определялись назначением здания и его этажностью.

Наряду с основными и комбинированными в проектировании получают применение смешанные конструктивные системы, в которых сочетаются по высоте или протяженности здания двух или нескольких конструктивных систем. Такое решение обычно бывает продиктовано функциональными требованиями. Например, если требовалось выполнить переход от бескаркасной системы в верхних типовых этажах к каркасной системе на первых этажах, т.е. при необходимости устройства мелкоячеистой планировочной структуры типовых этажей над зальной планировочной структурой в нетиповых. Чаще всего эта необходимость возникает при устройстве крупных магазинов в первых этажах жилых домов.

Конструктивная схема представляет собой вариант конструктивной системы по признакам состава и типу размещения в пространстве основных несущих конструкций, например, в продольном или поперечном направлениях. Конструктивную схему, как и систему, выбирают на начальном этапе проектирования с учетом объемно-планировочных конструктивных и технологических требований. В жилых каркасных зданиях применяют четыре конструктивные схемы: с поперечными или продольными ригелями, перекрестным расположение ригелей и безригельную.

При выборе конструктивной схемы каркаса учитывают экономические и архитектурные требования: элементы каркаса не должны связывать планировочное решение; ригели каркаса не должны пересекать поверхность потолка в жилых комнатах и т. д. Поэтому каркас с поперечным расположением ригелей применяют в многоэтажных зданиях с регулярной планировочной структурой (в основном, общежития и гостиницы), совмещая шаг поперечных перегородок с шагом несущих конструкций. Каркас с продольным расположением ригелей применялся в жилых домах квартирного типа.

Безригельный (безбалочный) каркас в жилых зданиях использовался лишь при отсутствии в конкретном регионе соответствующей производственной базы и крупных домостроительных комбинатов, поскольку для сборного жилищного строительства такая схема - наименее надежная и наиболее дорогостоящая. Безригельный каркас преимущественно использовался при изготовлении монолитных и сборно-монолитных конструкций здания методом подъема этажей.

Строительная система - это комплексная характеристика конструктивного решения зданий по материалу и технологии возведения основных несущих конструкций.

Строительные системы зданий с несущими стенами из кирпича и мелких блоков из керамики, легкого бетона или естественного камня бывают традиционные и полносборные.

Традиционная система основана на возведении стен в технике ручной кладки, как это издревле выполнялось во всех традиционных сооружениях. Необходимо отметить, что в индустриальном сооружении собственно традиционными остаются лишь ограждающие конструкции, перекрытия и другие внутренние несущие конструкции - полностью идентичны полносборным сооружениям.

Полносборная система основывается на механизированном монтаже стен из крупных блоков или панелей, выполненных в заводских условиях из кирпича, каменных или керамических блоков. С вводом новых жилищных серий крупноблочная система почти повсеместно уступает место панельной.

Традиционная система (с деревянными перекрытиями), долгое время считавшаяся основным типом капитального гражданского здания средней и повышенной этажности - осталась в прошлом. Как это неоднократно подчеркивалось, "традиционными" назывались сооружения по сценарию пожара. Лишь для удобства классификации огромного многообразия индустриальных сооружений, в них выделяются традиционные здания, лишь по внешнему виду напоминающие прежние кирпичные сооружения, возводимые до конца 50-х годов.

К середине 80-х годов прошлого столетия на основе применения традиционной системы ограждающих конструкций возводилось около 30% объема строительства жилых и 80% - массовых общественных зданий. Разумеется, уровень индустриальности конструкций зданий "традиционной" строительной системы в целом достаточно высок благодаря массовому применению крупноразмерных сборных изделий перекрытий, лестниц, перегородок, фундаментов.

Индустриальная традиционная система обладала существенными архитектурными преимуществами. Благодаря малым размерам основного конструктивного элемента стены (кирпича, камня) эта система позволяет проектировать здания любой формы с различными высотами этажей и разнообразными по размерам и форме проемами.

Применение традиционной системы считалось наиболее целесообразным для зданий, доминирующих в застройке. Конструкции зданий со стенами ручной кладки надежны в эксплуатации - кирпич высокотехнологичного обжига не требовал устройства многодельной, недолговечной в эксплуатации штукатурки, была значительно повышена огнестойкость индустриальных кирпичных стен. При их проектировании использовались новые подходы к обеспечению долговечности и теплоустойчивости.

Наряду с архитектурными и эксплуатационными преимуществами ручная кладка стен является причиной основных технических и экономических недостатков каменных зданий: трудоемкость возведения и нестабильность прочностных характеристик кладки в зависимости от разных партий кирпича в случае незначительных отклонений в технологическом процессе на кирпичных заводах. Качество и прочность кладки зависели от сезона возведения и квалификации каменщика.

Крупноблочная строительная система применялась для возведения жилых зданий высотой до 22 этажей. Масса сборных элементов составляла 3-5 т. Установку крупных блоков осуществлялась по основному принципу возведения каменных стен - горизонтальными рядами, на растворе, с взаимной перевязкой швов.

Преимуществами крупноблочной строительной системы являются: простота техники возведения, обусловленная самоустойчивостью блоков при монтаже, возможностью широкого вменения системы в условиях различной сырьевой базы. Гибкая система номенклатуры блоков позволяла возводить различные типы жилых домов при ограниченном числе типоразмеров изделий. Эта система требовала меньших по сравнению с панельным и объемно-блочным домостроением капиталовложений в производственную базу из-за простоты и меньшей металлоемкости формовочного оборудования, а ограниченная масса сборных изделий позволяла использовать распространенное монтажное оборудование малой грузоподъемности.

Создание крупноблочной строительной системы стало первым этапом массовой индустриализации конструкций зданий с бетонными стенами. Крупноблочная система по сравнению с традиционной каменной дала снижение затрат труда на 10% и сроков строительства на 15-20%. По мере внедрения более индустриальной панельной системы постепенно уменьшается объем применения крупноблочной. Уже к середине 70-х годов прошлого столетия крупноблочная система в массовом жилищном строительстве занимает третье место по объему применения после панельной и традиционной каменной систем.

Панельная строительная система применяется при проектировании зданий высотой до 30 этажей в обычных грунтовых условиях и до 14 этажей в сейсмических районах. Внедрение панельной системы в жилищное строительство было начато в конце 1940-х годов одновременно в СССР и во Франции. В 1967 г. вступил в действие разработанный Госстроем СССР ГОСТ 11309-65 на все типы крупнопанельных домов, определяющий все требования к их качеству, устройству стыков и степени точности производства и монтажа изделий.

Стены таких зданий монтируют из бетонных панелей высотой в этаж, массой до 10 т и длиной в 1-3 конструктивно-планировочных шага.

Техническим преимуществом панельных конструкций является их значительная прочность и жесткость. Это определило широкое применение панельных конструкций для зданий повышенной этажности в сложных грунтовых условиях (на просадочных и вечномерзлых грунтах, над горными выработками). По той же причине панельные конструкции демонстрируют большую сейсмостойкость по сравнению с другими строительными системами.

В других экономически развитых странах объем панельного строительства растет также интенсивно, что объясняется высокой экономической эффективностью строительной системы. Однако, следует заметить, что ни одна страна к началу 80-х годов не имеет такой мощной индустриальной базы строительной отрасли, а к середине 80-х большинство западных стран затронуто серьезным экономическим кризисом.

Каркасно-панельная строительная система с несущим сборным железобетонным каркасом и наружными стенами из бетонных или небетонных панелей применяется в строительстве зданий высотой до 30 этажей. Внедрена в СССР наряду с панельной в конце 1940-х годов, до начала 90-х годов на ее основе ежегодно возводилось около 15% объема общественных зданий. В жилищном строительстве систему применяли в ограниченном объеме, поскольку она уступала панельной по технико-экономическим показателям.

Объемно-блочная строительная система также впервые была внедрена советскими строителями. Объемно-блочные здания возводят из крупных объемно-пространственных железобетонных элементов массой до 25 т, заключающих в себе жилую комнату или другой фрагмент здания. Объемные блоки, как правило, устанавливали друг на друга без перевязки швов.

Объемно-блочное строительство позволяет существенно снизить суммарные трудозатраты в строительстве (на 12-15% по сравнению с панельным) и получить прогрессивную структуру этих затрат. Если в панельном строительстве соотношение затрат труда на заводе и строительной площадке составляет в среднем 50 на 50%, то в объемно-блочном оно приближается от 80% заводского изготовления к 20% трудозатрат на стройплощадке. Из-за сложности технологического оборудования капиталовложения при создании заводов объемно-блочного домостроения на 15% больше по сравнению с заводами панельного домостроения.

Объемно-блочную систему применяют для строительства жилых домов высотой до 16 этажей в обычных и сложных грунтовых условиях и для жилых домов малой и средней этажности при сейсмичности 7-8 баллов. Наиболее эффективно объемно-блочное домостроение при значительной концентрации строительства, необходимости его осуществления в сжатые сроки, при дефиците рабочей силы.